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Abstract 
Barnyardgrass (Echinochloa crus-galli) is one of the most troublesome weeds in irrigated rice cultivation 
and has increasingly impacted rainfed crops due to the emergence of herbicide-resistant populations. 
Understanding its germination dynamics is crucial for developing and implementing effective management 
strategies. Additionally, since barnyardgrass research relies on growing plants from seeds, its dormancy 
characteristics are of particular interest. The present study aimed to evaluate the influence of postharvest 
age on barnyardgrass seed germination and the effectiveness of different dormancy-breaking methods in 
susceptible and herbicide-resistant populations. Germination rate (G), germination speed index (GSI), and 
seed viability, assessed using the topographic tetrazolium test, were measured in seed lots with four 
different postharvest ages: two years, one year, two months, and one day postharvest. The seeds were 
subjected to 15 dormancy-breaking methods, including temperature variation and the use of solutions 
containing H2SO4, KNO3, and GA3. Seeds that were one or two years old showed germination rates 
exceeding 90%, regardless of the method used. In contrast, seeds aged two months or one day postharvest 
only germinated when exposed to 40°C for seven days, with G values of 25.2% and 5.9%, respectively. Both 
herbicide-susceptible and resistant barnyardgrass populations exhibited similar dormancy levels and 
responses to dormancy-breaking methods. The results indicate that newly harvested seeds have high 
dormancy levels, and specific methods are only partially effective in overcoming barnyardgrass seed 
dormancy. 
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1. Introduction 
 

Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.) is one of the most problematic weeds in 
irrigated rice (Oryza sativa L.) cultivation in Brazil and other countries (Tian et al. 2020; Ulguim et al. 2021). 
It has also become a significant concern in soybean and corn crops (Marchesi and Saldain 2019), 
particularly with crop rotation systems. It is particularly troublesome due to its substantial adaptability, 
wide distribution, high germination capacity under water deficit, and high plasticity regarding temperature 
and CO2 concentration (Bajwa et al. 2015; Dalazen et al. 2020). 

Barnyardgrass has a C4 photosynthetic metabolism (Elmore and Paul 1983) and exhibits a high 
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competitive capacity (Agostinetto et al. 2021). Depending on factors such as weed density, rice cultivar, 
and irrigation management, yield losses can be up to 90% (Pinto et al. 2008; Bajwa et al. 2015). Instances 
of herbicide resistance have also been documented: in Brazil, E. crus-galli has developed isolated 
resistance to several herbicide groups, including auxin mimics (group O, 4), acetolactate synthase (ALS) 
inhibitors (group B, 2), acetyl-CoA carboxylase (ACCase) inhibitors (group A, 1), cellulose synthesis 
inhibitors (group L, 29), and 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) inhibitors (group G, 9) 
(Matzenbacher et al. 2015; Heap 2024). Globally, 52 cases of resistance have been reported in 24 
countries, ranking barnyardgrass among the top 15 most problematic weed species regarding herbicide 
resistance (Yang et al. 2017; Heap 2024). 

Barnyardgrass reproduces by seeds, producing 2,000 to 4,000 seeds per plant, depending on 
environmental conditions (Gibson et al. 2002). Despite the high seed production, dormancy reduces the 
likelihood of plant emergence soon after seed dispersal. Dormancy contributes to the soil seed bank, 
allowing seeds to germinate over an extended period, leading to prolonged weed outbreaks (Clay et al. 
2005; Longo et al. 2021). The viability of barnyardgrass seeds has been observed even after 12 years when 
buried at a depth of 20 cm (Burnside et al. 1996). Therefore, seed dormancy hampers the control of this 
species in agricultural areas. 

Furthermore, information on the physiology, molecular regulation, and dormancy-breaking 
methods of barnyardgrass seeds is scarce, especially when compared to other common weeds in rice 
cultivation, such as weedy rice (Oryza sativa). In recent years, important advances have been made in 
understanding the molecular mechanisms of seed dormancy in weedy rice (Fogliatto et al. 2020). Over 12 
quantitative trait loci (QTLs) have been identified as regulators of dormancy in weedy rice seeds (Zhang et 
al. 2020). Additionally, the interaction between genotype and environment plays a crucial role in dormancy 
in weedy rice (Fogliatto et al. 2012). Many plants show variable germination rates due to dormancy, with 
the intensity and duration of dormancy influenced by biotype and environmental conditions (Delatorre 
1999; Guillemin et al. 2013). Efforts to control barnyardgrass are complicated by seed dormancy, as seeds 
tend to emerge at low or inconsistent rates due to prolonged dormancy periods. Moreover, studies on 
herbicide resistance in barnyardgrass require seeds to be evaluated soon after harvest to ensure rapid 
assessments and provide timely information to producers (Matzenbacher et al. 2013). In some cases, the 
limited availability of seeds for research necessitates high germination rates. 

Several methods for overcoming weed seed dormancy are known. However, their effectiveness 
depends on several factors, such as species, biotype, seed age, and the conditions and chemical treatments 
applied (Nawrot-Chorabik et al. 2021; Abrantes et al. 2021). These methods include the use of 
concentrated sulfuric acid (H2SO4), potassium nitrate (KNO3), gibberellic acid (GA3), hot water, temperature 
variation, thermal shock, mechanical scarification, and fire (Azania et al. 2003). 

In addition to dormancy-breaking methods, the postharvest period significantly impacts seed 
dormancy levels. For E. crus-galli, germination rates are known to increase over time (Martinkova et al. 
2006). Furthermore, combining dormancy-breaking methods may be more effective when isolated 
methods are insufficient. For example, immersing seeds for three days in 0.25M ethanol in the dark at 35–
37°C, followed by germination for 14 days at 20–30°C with a 16/8 hour (day/night) photoperiod, resulted 
in germination rates higher than 80% in some E. crus-galli populations, although rates were considerably 
lower in others (Kovach et al. 2010).  

A comprehensive evaluation of various dormancy-breaking methods is crucial for providing 
consolidated information on barnyardgrass. In this regard, the present study aimed to evaluate the impact 
of the postharvest period and different dormancy-breaking methods on the germination and viability of 
barnyardgrass seeds. 
 
2. Material and Methods 
 

The experiment was conducted at the Molecular Biology Laboratory of the Faculty of Agronomy at 
the Federal University of Rio Grande do Sul (Universidade Federal do Rio Grande do Sul - UFRGS), Porto 
Alegre, Rio Grande do Sul (RS), Brazil. The experimental design was completely randomized and organized 
in a factorial scheme, with four replicates of 100 E. crus-galli seeds placed in Petri dishes containing three 
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layers of previously sterilized filter paper. Four barnyardgrass populations were evaluated in separate 
experiments: two susceptible populations (SUSSP01 from Engenheiro Coelho, São Paulo (SP); MOSTS01 
from Mostardas, RS) and two populations resistant to imidazolinone herbicides (ARRG01 from Arroio 
Grande, RS; PALMS01 from Palmares do Sul, RS) (Dalazen et al. 2018). Seeds from the second generation 
(generation 2) of each population were used.  

Factor A consisted of four postharvest ages of barnyardgrass seeds: two years, one year, two 
months, and one day postharvest. Except for newly harvested seeds (one day postharvest), the other seeds 
were stored in a dry place at 25°C until the experiment began. Factor B included 15 dormancy-breaking 
methods obtained from a literature review of methods previously applied to Echinochloa spp. with some 
methodological adaptations, as follows: 

T1 – Control: Seeds were soaked in distilled water. 
T2 – Gibberellic acid (GA3): Four levels of GA3 were evaluated, defined as T2a, T2b, T2c, and T2 d. In 

T2a and T2b, the seeds were submerged in a GA3 solution at 0.05% and 0.10%, respectively, for 24 hours. In 
T2c and T2 d, the seeds were submerged in a GA3 solution at 0.05% and 0.10%, respectively, until the end of 
the evaluations. 

T3 – Potassium nitrate (KNO3) + low temperature: The seeds were kept in a 0.2% KNO3 solution for 
24 hours, washed with distilled water, and stored at 5°C for seven days. 

T4 – Hot water: The seeds were submerged in water at 40°C for 24 hours. 
T5 – Sulfuric acid (H2SO4): The seeds were submerged in 96% H2SO4 (36N) for three minutes (T5a) or 

five minutes (T5b), then washed with distilled water. 
T6 – High temperature: The seeds were kept in a forced air oven at 40°C for seven days. 
T7 – Low temperature: The seeds were stored at 5°C for seven days. 
T8 – Submersion in water: The seeds were submerged in water at room temperature for 24 hours. 
T9 – Thermal shock: The seeds were stored at 5°C for seven days, then transferred to a forced air 

oven at 40°C for 48 hours. 
T10 – Submersion + KNO3: The seeds were submerged in a 0.2% (T10a) or a 0.4% (T10b) KNO₃ 

solution until the end of the evaluations. 
In treatments T2c, T2d, T10a, and T10b, the seeds were submerged in the respective solutions for the 

entire evaluation period. In the other treatments, after the initial exposure, the seeds were transferred to 
Petri dishes containing three layers of sterilized filter paper, with 7 mL of distilled water added. All seeds 
were kept in a controlled environment at 25°C with constant light throughout the observation period. 

The evaluation involved daily counting of germinated seeds over 45 days to determine the 
germination speed index (GSI), following the methodology described by Maguire (1962). The germination 
rate (G) was determined at the end of the counting period. Non-germinated seeds were assessed using the 
topographic tetrazolium test (Brasil 2009) to determine the viability of potentially dormant seeds. 

Data were submitted to normality and homogeneity tests, transformed to √𝑋, and subsequently 
submitted to an analysis of variance (p<0.05). Means were compared using Tukey's test (p<0.05). 
 
3. Results 
 

No significant variations were found between the populations evaluated. Therefore, the averages of 
the four populations are presented. Significant differences in the G values were observed across 
dormancy-breaking treatments and different postharvest ages (Table 1). Seeds with longer postharvest 
periods (two years and one year) exhibited higher G values than newly harvested seeds (two months and 
one day). Seeds stored for two years had a G value of 96.8%, while those stored for one year had a G value 
of 90.6%. In contrast, seeds stored for two months or one day exhibited a G value of 0%. 

 The storage period also influenced the effectiveness of dormancy-breaking methods (Table 1). For 
seeds stored for two years, no significant differences were found between methods regarding G values, 
which averaged 96.0%. Similarly, seeds stored for one year did not show a significant increase in G in 
response to dormancy-breaking treatments. Conversely, a 10.5% reduction in germination was observed 
when seeds were submerged in water for 24 hours (T8) (Table 1). For seeds with a postharvest age of two 
months or one day, the only method of overcoming dormancy that significantly increased G was exposure 
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to high temperature (40°C) for seven days (T6) (Table 1). This treatment increased germination by 25.2% 
for seeds stored for two months and 5.9% for seeds stored for one day compared to the control. 

Therefore, the present study demonstrates that seeds stored for more than one year exhibited high 
G values, rendering dormancy-breaking treatments unnecessary in these cases. In contrast, recently 
harvested seeds showed a modest but significant increase in G when subjected to high-temperature 
treatment (Table 1).  

 
Table 1. Seed germination rate of Echinochloa crus-galli as a function of postharvest age and methods of 
overcoming dormancy.  

Treatment Postharvest period  

 two years one year two months one day  

T1 - Control 96.8aA 90.6aA 0.0bB 0.0bB  
T2a - 0.05% GA3 for 24h 93.1aA 97.3aA 0.0bB 0.7bB  
T2b - 0.10% GA3 for 24h 97.0aA 98.0aA 0.7bB 0.2bB  
T2c - Final 0.05% GA3 99.3aA 99.4aA 0.0bB 0.0bB  
T2d - Final 0.10% GA3  98.3aA 97.2aA 0.0bB 0.0bB  
T3 - KNO3 + low temperature 98.9aA 98.1aA 0.0bB 0.0bB  
T4 - Hot water 98.7aA 93.4aA 0.0bB 0.5bB  
T5a - H2SO4 3 min 92.1aA 95.0aA 0.0bB 0.0bB  
T5b - H2SO4 5 min 98.9aA 96.2aA 2.0bB 0.0bB  
T6 - High temperature (40 °C) 98.3aA 97.0aA 25.2aB 5.9aC  
T7 - Low Temperature (5 °C) 90.3aA 92.6aA 0.0bB 0.0bB  
T8 - Water submersion 96.1aA 80.0bB 0.0bC 0.0bC  
T9 - Thermal shock 95.1aA 93.7aA 0.0bB 0.0bB  
T10a - Submersion + 0.2% KNO3 95.8aA 95.5aA 0.3bB 0.0bB  
T10b - Submersion + 0.4% KNO3 91.1aA 92.6aA 0.0bB 0.0bB  

Average 96.0 94.4 1.9 0.5  

CV (%) 9.5 
 

Means preceded by the same lowercase letters in a column or followed by the same uppercase letters in a row do not differ by Tukey's test at 
5%.  

 
GSI evaluations revealed that, across all treatments, seeds stored for longer periods (two years and 

one year) had higher GSI values (9.5 and 9.4, respectively; Table 2) than those with postharvest ages of two 
months or one day (<0.1). The only dormancy-breaking method that significantly affected GSI was 
submersion in water for 24 hours (T8), which reduced the GSI to 8.0 for seeds with a postharvest age of 
one year (Table 2).  

Non-germinated seeds were evaluated using the topographic tetrazolium test. The results show 
that over 95% of the seeds were classified as viable in all treatments, regardless of postharvest age. 
Additionally, newly harvested seeds (two months and one day) exhibited a high dormancy level (Table 3).  
 
4. Discussion 
 

Barnyardgrass seeds with one or two years of postharvest age had higher G values than seeds 
harvested two months or just one day prior (Table 1). These results align with previous studies on 
barnyardgrass, which found that newly harvested seeds of E. crus-galli exhibit primary dormancy that can 
be overcome by an extended storage period. For example, Martinkova et al. (2006) observed that 
barnyardgrass seeds stored for eight years had higher G values (52.2%) compared to those stored for one 
year (2.4%). Similarly, Van Acker (2009) reported higher G values in E. crus-galli seeds stored for eight 
months (50%) compared to freshly harvested seeds (1.4%). Peralta Ogorek et al. (2019) also observed 
higher G values eight months after harvesting barnyardgrass seeds. 

In newly harvested seeds, physical and physiological barriers can affect the immediate germination 
process. Physical barriers, such as glumellae, pericarps, and seed coats, protect the embryo from adverse 
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environmental conditions and microorganisms (Baskin and Baskin 2000). In barnyardgrass, dormancy is 
particularly associated with physical barriers present in the integuments and, more specifically, in the 
caryopses (Miyahara 1974). These barriers also prevent the entry of water and oxygen into the seed 
tissues, delaying the initiation of the germination process. However, when seeds are stored in dry 
conditions for a certain period, O2 permeates to the seed interior, aiding in overcoming dormancy and 
promoting seed germination (Olatoye and Hall 1973; Silveira et al. 2014). This is reflected in the increased 
germination observed in seeds stored for over a year (Table 1). Besides, these physical barriers, an 
evolutionary characteristic of the species, may account for the lack of significant differences in germination 
between the biotypes evaluated. 

 
Table 2. Seed germination speed index (GSI) in Echinochloa crus-galli as a function of seeds’ postharvest 
age and methods of overcoming dormancy. 

Treatment  Postharvest period 

  two years one year two months one day 

T1 - Control  9.6aA 9.0aA 0.0aB 0.0aB 

T2a - 0.05% GA3 for 24h  9.3aA 9.7aA 0.0aB 0.1aB 

T2b - 0.10% GA3 for 24h  9.7aA 9.8aA 0.1aB 0.0aB 

T2c - Final 0.05% GA3  9.9aA 9.9aA 0.0aB 0.0aB 

T2d - Final 0.10% GA3   9.8aA 9.7aA 0.0aB 0.0aB 

T3 - KNO3 + low temperature  9.8aA 9.8aA 0.0aB 0.0aB 

T4 - Hot water  9.8aA 9.3aA 0.0aB 0.0aB 

T5a - H2SO4 3 min  9.2aA 9.5aA 0.0aB 0.0aB 

T5b - H2SO4 5 min  9.5aA 9.6aA 0.2aB 0.0aB 

T6 - High temperature (40 °C)  9.8aA 9.7aA 2.5aB 0.6aB 

T7 - Low Temperature (5 °C)  9.1aA 9.2aA 0.0aB 0.0aB 

T8 - Water submersion  9.6aA 8.0bB 0.0aC 0.0aC 

T9 - Thermal shock  9.6aA 9.3aA 0.0aB 0.0aB 

T10a - Submersion + 0.2% KNO3  9.5aA 9.5aA 0.0aB 0.0aB 

T10b - Submersion + 0.4% KNO3  9.1aA 9.2aA 0.0aB 0.0aB 

Average   9.5 9.4 0.2 0.0 

CV (%)   7.6 
Means preceded by the same lowercase letters in a column or followed by the same uppercase letters in a row do not differ by Tukey's test at 
5%. 

 
Chemical scarification methods using H2SO4 for three (T5a) and five (T5b) minutes significantly 

increased the G values of seeds with a postharvest age of two months or one day (Table 1). This lack of 
effect may be attributed to the short exposure time to H2SO4, which may not have been sufficient to reach 
the caryopsis region of the seed. Sadeghloo et al. (2013) observed that 95% of barnyardgrass seeds 
germinated after 15 minutes of exposure to concentrated H2SO4 (98%). Moreover, Sung et al. (1987) 
observed that 40 minutes of exposure of barnyardgrass seeds to H2SO4 resulted in 100% germination, 
compared to only 28% when the treatment lasted 10 minutes.  

GA3 application, regardless of concentration and exposure time, did not increase G (Table 1). This 
growth regulator acts as an antagonist to dormancy induced by abscisic acid (ABA) and also regulates the 
hydrolysis of seed reserves. However, the balance between these hormones depends on various 
endogenous factors, such as gene regulation, and exogenous factors, including temperature, light, and 
humidity (Tuan et al. 2018). In rice seeds, reducing ABA-induced reactive oxygen species (ROS) can nullify 
the effect of GA3, thereby reducing G (Ye et al. 2012).  

Similarly, treatments containing KNO3 did not increase the G values of barnyardgrass seeds (Table 
1). The hypothesis regarding nitrate action involves altering the seed’s osmotic potential, thereby 
increasing the water absorption capacity of the caryopsis (McIntyre 1997). Studies have shown that the 
presence of KNO3 in seeds reduces the need for GA3 for germination and that its effect depends on the 
interaction with temperature and hormones like ABA and GA3 (Alboresi et al. 2005). KNO3 is a nitrate 
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compound commonly found in nature, particularly in drained environments, and is nearly absent in 
flooded soils. Thus, in these non-flooded environments, its accumulation signals the presence of O2, which, 
in turn, stimulates seed germination (Mollard and Insausti 2009).  

 
Table 3. Topographic test of tetrazolium seeds from Echinochloa crus-galli as a function of postharvest age 
and methods of overcoming dormancy. 

   Viability (%) 

Treatment  Postharvest period 

  two years one year two months one day 

T1 – control  A 96.0 a* A 95.6a A 96.8a A 97.6a 

T2a – 0.05% GA3 for 24h  A 98.1a A 97.3a A 96.2a A 97.3a 

T2b – 0.10% GA3 for 24h  A 97.5a A 98.0a A 97.0a A 98.0a 

T2c – final 0.05% GA3  A 99.0a A 99.4a A 99.4a A 99.4a 

T2d – final 0.10% GA3  A 98.0a A 97.3a A 98.3a A 97.2a 

T3 – KNO3 + low temperature  A 98.0a A 98.1a A 98.9a A 98.1a 

T4 – hot water  A 97.7a A 96.9a A 98.7a A 97.4a 

T5a – H2SO4 3 min  A 96.1a A 98.0a A 97.6a A 97.0a 

T5b – H2SO4 5 min  A 98.9a A 96.2a A 95.9a A 96.2a 

T6 – High temperature  A 98.3a A 97.0a A 98.3a A 97.0a 

T7 – Low Temperature  A 96.3a A 95.9a A 97.3a A 96.6a 

T8 – Water submersion  A 96.2a A 97.1a A 96.1a A 97.5a 

T9 – Thermal shock  A 95.1a A 97.6a A 95.1a A 98.7a 

T10a – Submersion + 0.2% KNO3  A 95.8a A 96.5a A 95.8a A 95.8a 

T10b - Submersion + 0.4% KNO3  A 97.1a A 98.6a A 97.1a A 96.6a 

Average   97.2 97.3 97.2 97.4 

CV (%)   5.5 
* Means preceded by the same uppercase letter in a row or followed by lowercase letters in a column do not differ by Tukey's test at 5%. 

 
The present results show that high-temperature treatment (T6 - 40°C for seven days) significantly 

increased the G values of barnyardgrass seeds with postharvest ages of two months or one day (Table 1). 
This treatment was the most effective method for overcoming dormancy in barnyardgrass, aligning with 
findings of Brasil (2009). Taylorson and Di Nola (1989) achieved similar results by exposing barnyardgrass 
seeds to 38°C for eight days, resulting in a G value of 82%. However, increasing the temperature to 42°C 
led to a decrease in G to 28%. The authors also reported an interaction between temperature and light 
intensity, where higher G values were associated with increased light exposure following heat treatment. 
Previous research by Kovach et al. (2010) also supports these findings. They noted that at a low 
temperature (10 °C), germination was absent in the presence of light and 25% in the dark, indicating a 
negative photoblastic response. At 20°C, G values were 94% with light and 25% without light, showing a 
positive photoblastic response. However, at 30°C, the G value was high (85-95%), regardless of the 
presence of light.  

In weedy rice, different environmental factors can affect seed dormancy; however, temperature is 
the key factor controlling dormancy breaking (Liu et al. 2013). Temperature acts in conjunction with light 
on the signaling and hormonal balance of ABA and GA (Gubler et al. 2008; Izydorczyk et al. 2017). 
Consequently, it also plays a role in the enzymatic degradation of substances involved in the germination 
process and the protein composition of seed cell membranes (Di Nola and Taylorson 1989; Tuan et al. 
2018). As previously discussed by Kovach et al. (2010), the dormancy process in barnyardgrass seeds is 
highly complex. The present study further underscores the critical role of temperature in breaking 
dormancy and regulating germination, as the high-temperature treatment yielded the highest G values for 
barnyardgrass seeds (Table 1). 

The low GSI values (Table 2) combined with the seed viability observed in the tetrazolium test 
(Table 3) for seeds with postharvest ages of two months or one day indicates that dormancy is a crucial 
factor in maintaining a viable barnyardgrass seed bank in the soil. This highlights the need for integrated 
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management strategies to control this species, including efforts to prevent seed production and dispersal, 
especially given recent cases of herbicide resistance, including resistance to glyphosate (Heap 2021). For 
experimental purposes, these results suggest that dry storage for one year is the most effective method for 
obtaining non-dormant seeds. However, exposing seeds to temperatures of 40°C for seven days 
significantly increased G, particularly for seeds with a postharvest age of two months. Thus, employing 
techniques that lower soil temperatures, such as using straw in no-tillage systems, can reduce 
barnyardgrass germination. 
 
5. Conclusions 
 

Herbicide-susceptible and resistant barnyardgrass populations exhibited similar dormancy levels 
and responses to seed dormancy-breaking methods. The postharvest age of barnyardgrass seeds 
significantly affects the dormancy level and, consequently, germination rate and germination speed index 
values.  

Seeds assessed one day and two months after harvest had low germination rates and germination 
speed index values due to dormancy. This dormancy is naturally overcome once seeds are stored for one 
or two years. 

Exposure to temperatures of 40°C for seven days significantly increases the germination rates of 
seeds harvested two months or one day after harvest, with increases of 25.2% and 5.9%, respectively. 
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