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ABSTRACT: Crop harvest scheduling and profits and losses predications require strategies that 

estimate crop yield. This work aimed to investigate the contribution of phenological variables using path 
analysis and remote sensing techniques on cotton boll yield and to generate a model using decision trees that 
help predict cotton boll yield. The sampling field was installed in Chapadão do Céu, in an area of 90 ha. The 
following phenological variables were evaluated at 30 sample points: plant height at 26, 39, 51, 68, 82, 107, 
128, and 185 days after emergence (DAE); number of floral buds at 68, 81, 107, 128, and 185 DAE; number of 
bolls at 185 DAE; Rededge vegetation index at 23, 35, 53, 91, and 168 DAE; and cotton boll yield. The main 
variables that can be used to predict cotton boll yield are the number of floral buds (at 107 days after 
emergence) and the Rededge vegetation index (at 53 and 91 days after emergence). To obtain higher cotton boll 
yields, the Rededge vegetation index must be greater than 39 at 53 days after emergence, and the plant must 
present at least 14 floral buds at 107 days after emergence.  
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INTRODUCTION 
 

Upland cotton (Gossypium hirssutum L.r. 
latifolium Hutch.) is one of the most important 
textile fibers in the world, being one of the major 
economic important crops in Brazil (CARVALHO 
et al., 2015). The production cost of cotton crops in 
the Brazilian cerrado is about three times higher 
than that of soybean due to the increased number of 
pesticide applications, more demanding fertilizer of 
genotypes and more stringent crop treatments 
(IMEA, 2017; 2018). Therefore, an economically 
viable production requires techniques to minimize 
production costs and maximize continuous crop 
monitoring, such as precision agriculture (PA), 
which provides the knowledge of the variability of 
the different factors that directly influence 
production (SANA et al., 2014). 

Monitoring the dynamics of terrestrial 
vegetation using remote sensing techniques may be 
relevant for agricultural activities. Currently, crops 
have been studied mainly by the analysis of their 
biophysical data for agronomic parameters (SOUZA 
et al., 2017). Besides remote sensing techniques, the 
use of vegetation indices (VI) of multispectral 
optical sensors correlates adequately to various plant 
growth attributes, such as plant biomass and leaf 
nitrogen (PORTZ et al., 2012; AMARAL et al., 
2015). This fact allows its rationalized application 

and improves the efficiency of agrochemical inputs, 
decreases costs, and increases crop yield 
(SALVADOR; ANTUNIASSI, 2011; AMARAL et 
al., 2015). 

Cruz and Regazzi. (2012) report that path 
analysis is a multivariate technique that unfolds the 
correlations between variables in direct and indirect 
effects on a major dependent variable. This analysis 
is commonly employed in plant breeding. This work 
aimed to evaluate the contribution of phenological 
variables using path analysis and remote sensing 
techniques on cotton boll yield and to generate a 
model using decision trees that help predict cotton 
boll yield. 
 
MATERIAL AND METHODS 
 

The experiment was performed in a cotton 
crop located in the region of Chapadões, in a 92 ha 
stand, at Fazenda Amambaí, municipality of 
Chapadão do Céu-GO (lat. 52°37'17.79 °C; long. 18 
°21'21.40"S), in the agricultural year of 2014/15. 
The soil of the area is classified as Dystrophic Red 
Latosol (EMBRAPA, 2018). The average annual 
rainfall is 2,196 mm, and the average temperature is 
22.5 °C. The climate of the region is tropical with 
dry winter, according to the Köppen classification. 
Its average altitude is 815 m, with predominantly 
smooth relief with 1 to 2% slope. 

Received: 14/05/18 
Accepted: 10/12/18 



1848 
In situ remote…  BAIO, F. H. R. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1847-1854, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42261 

Sowing was carried out on January 10th 
2015, without second cultivation, having common 
beans as the previous crop. The cultivar FM 975WS 
was used in the experiment, spaced at 0.80 m 
between rows, totaling a population of 100,000 
plants per hectare. Base fertilization followed the 
soil analysis, according to recommendations for 
cultivation in cerrado (FREIRE 2015). Fertilization 
was performed with 15 kg ha-1 of Nitrogen, 81 kg 
ha-1 of P2O5 in the planting groove, 90 kg ha-1 de 
K2O applied on the surface, and 22 kg ha-1 of 
Nitrogen applied as topdressing. Phytosanitary 
treatments and agricultural inputs were applied 
during the crop development by monitoring the 
crop, following the standards for pest control and 
disease in the region (FREIRE 2015). 

The sampling points were randomly 
distributed on the cotton stand at 23 DAE (days 
after emergence), corresponding to the phenological 
stage V5 (fifth true leaf), according to the 
classification proposed by Marur and Ruano (2001). 
Thirty points were determined in the field, based on 
the methodology described by Salvador and 
Antuniassi (2011). The points were distributed 
randomly at different sampling distances (Figure 1). 
At each sampling point, the phenological indices of 
five plants were measured to represent the local 
variability by their mean. These plants were marked 
to identify them for the following samplings. A 
GNSS Trimble Nomad (Sunnyvale, USA) was used 
to navigate to the sample points, in the Farm Works 
Mobile field sampling software of the same 
company. 

 

 
Figure 1. Statement of the evaluated points. 
 

The following phenological variables were 
evaluated at 30 sample points: plant height (PH) at 
26, 39, 51, 68, 82, 107, 128, and 185 days after 
emergence (DAE); number of floral buds at 68, 81, 
107, 128, and 185 DAE; number of bolls at 185 
DAE; Rededge vegetation index at 23, 35, 53, 91, 
and 168 DAE; and cotton boll yield. PH of each 
point was measured on the main stem from the soil 
surface to the insertion of the last fully expanded 
leaf. 

VI data was collected using the active 
multispectral sensor N-Sensor ALS (Yara 
International ASA, Duelmen, Alemanha). This 
device is an active optical canopy sensor that emits 
its own light source and has spectral readings at the 
red and near-infrared edge wavelengths of 730 nm 
and 760 nm, respectively. The quartiles method of 
the values of the vegetation indices enabled the 
classification of the interpolated cells into three 

classes. The main function of this sensor is to detect 
the difference of reflectance, allowing the inference 
on the photosynthetic rate by a VI, according to 
Equation 1 (PORTZ et al., 2012). 

   1 
Where: VI = vegetation index; nl = natural 
logarithm; ρ = reflectance at the respective 
wavelength. 

The N-Sensor was attached on the top of the 
cab of a self-propelled John Deere sprayer Model 
4730 (Catalão, Brazil), at 3.10 m from the ground. 
The range scanned by the sensor has an average 
width of 3 m along the machine's travel path. The 
travel path was 30 m wide. To obtain the VI, plot 
scanning was carried out at 23, 35, 53, 91, and 168 
DAE, at different phenological stages of the cotton 
crop. 

The crop was harvested using a John Deere 
7760 (DesMoines, EUA) cotton harvester, and the 
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yield variability in the area was determined by a 
GreenStar Harvest Doc harvest monitoring system 
of the same company. At the end of the cycle, cotton 
yield data were evaluated, which had been obtained 
in the harvester containing yield sensors with 
georeferenced data. Thirty points were located over 
the map, using ArcGIS 10.5 software. After 
interpolation by the ordinary kriging methodology, 
the point yield information correlated to the other 
components was calculated by the mean of the 
points obtained within a 10 m radius of the control 
sampling point. 

First, the Pearson’s correlations between the 
phenological variables and yield were estimated. 
Due to the great number of variables in each class, 
the correlation network was used to graphically 
express the results, in which the proximity between 
the nodes (traces) is proportional to the absolute 
value of the correlation between them. The 
thickness of the borders was controlled by 
correlations estimations, where positive correlations 
were highlighted in green, while negative 
correlations were represented in red. This analysis 
was performed in the free software RBio 
(BHERING, 2017). 

Subsequently, the multicollinearity analysis 
of the X'X correlation matrix was performed based 
on the Montgomery & Peck (2001) classification. 
Afterward, path analysis was carried out considering 
yield (Y) as the main dependent variable and the 
others as explanatory variables. The phenological 
variables that present high direct effect (in module) 
and in the same direction of their correlations to Y 
were identified. Finally, variables were used to 
generate a decision tree algorithm, considering Y as 

dependent. In this process, 80% of the data were 
used for algorithm training, and 20% for validation. 
The accuracy of the model was evaluated by the 
correlation between the estimated and observed 
values in each step. These analyses were performed 
using the Genes software (CRUZ, 2013). 
 
RESULTS AND DISCUSSION 
 
Correlation between phenological variables and 
yield 

The linear correlations between cotton 
phenological variables and Y are shown in Figure 2. 
The highest correlation was observed between 
Rededge VI 23 DAE and Rededge VI 35 DAE (r = 
0.8405). The phonological variable floral buds at 
107 DAE presented the highest correlation to yield. 
In general, the vegetation index measured at 
different phenological stages of cotton plants was 
inter-correlated to the plant height at the initial 
stages. This fact happens because the vegetative 
growth of this crop produces a lot of plant matter 
originating from the increase of branches and 
leaves, covering the soil and increasing VI values. 
Souza et al. (2017) evaluated the correlation of VI to 
phenological indices in cotton and reported values 
of over 80% of similarity for plant height and over 
70% for number of branches per plant. Motomiya et 
al. (2014) observed the behavior of the interaction 
of growth regulator doses, nitrogen topdressing, and 
VI, where they presented increasing VI values at the 
initial stages of the cotton crop until 67 DAE. After 
this evaluation, the VI values observed were stable 
due to VI saturation and the change to the crops’ 
reproductive cycle. 

 
Figure 2. Pearson’s correlation network between phenological variables and yield (Y). 

** Y: yield; PH_AAA: plant height at AAA DAE; FB_BBB: number of floral buds at BBB DAE; BOL185: number of bolls 
at 185 DAE; RE_DDD: vegetation index at DDD DAE. 
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Linear correlations can be easily interpreted 
using the graphical network correlation technique. 
Usually, these results are expressed in an n × n 
dimension table, where n represents the number of 
variables evaluated. In this case, the large number of 
variables evaluated could compromise the overall 
interpretation of the results. The efficiency of this 
innovative technique has already been proven in 
other studies that evaluated a large number of 
variables (URSEM et al., 2008; DILEO et al., 2011; 
SILVA et al., 2016). 

Thus, although important, the Pearson's 
correlation coefficient may lead to 
misunderstandings about the relationship between 
two variables, and may not be an actual measure of 
cause and effect. A high or low correlation 
coefficient between two variables s can be the result 
of the effect that a third variable or a group of 
variables have on that couple or variables, not 
giving the exact relative importance of the direct 
and indirect effects of these factors (CRUZ & 
REGAZZI, 2012). Therefore, path analysis was 
performed, which investigates the cause and effect 

relationship. Based on Teodoro et al. (2014), path 
analysis provides detailed knowledge of the 
influences of the variables and justifies the existence 
of positive and negative correlations, of high and 
low magnitude, between the studied variables. 
 
Path analysis on yield 

To obtain the direct and indirect effects of 
path analysis, the matrix X'X must be well- 
conditioned. In the presence of multicollinearity, the 
variances associated with the path coefficient 
estimators can reach exceedingly high values, 
becoming unreliable. In addition, the parameter 
estimates may assume absurd values or these values 
may not be coherent with the studied biological 
phenomenon (CRUZ & REGAZZI, 2012). 
According to the Montgomery & Peck (2001) 
criterion, the Pearson's correlation coefficient matrix 
showed weak multicollinearity since the condition 
number was lower than 100. Since multicollinearity 
was not detected, all the variables evaluated in the 
path analysis were used (Table 1). 

 
Table 1. Path analysis of plant height (PH), number of floral buds (FB), number of bolls (BOL), and vegetation 

indices evaluated at different days after emergence on cotton boll yield. 

Effect 
PH
26 

PH
39 

PH
51 

PH
68 

PH
82 

PH
107 

PH
128 

PH
185 

FB
68 

FB
82 

FB
107 

FB
128 

BOL
185 

RE
23 

RE
35 

RE
53 

RE
91 

RE
168 

direct via Y 
0.6
8 

-
0.2
6 

-
0.0
3 

-
0.3
1 

-
0.3
9 

-
0.2
5 

0.3
4 

0.0
9 

0.2
6 

-
0.5
2 

0.3
1 

-
0.2
7 -0.13 

0.0
6 

-
0.5
7 

0.9
2 

0.1
7 

0.3
7 

indirect via 
PH26 --- 

0.4
3 

0.2
4 

0.2
0 

0.5
0 

0.1
2 

0.2
9 

-
0.2
1 

0.1
8 

0.2
0 

-
0.2
8 

-
0.1
0 0.10 

0.4
1 

0.4
7 

0.3
0 

-
0.0
2 

-
0.0
9 

indirect via 
PH39 

-
0.1
6 --- 

-
0.0
9 

-
0.0
5 

-
0.1
2 

0.0
3 

-
0.0
3 

0.1
2 

-
0.0
4 

0.0
0 

0.1
4 

0.0
5 0.00 

-
0.1
1 

-
0.1
5 

-
0.0
9 

0.0
0 

0.0
7 

indirect via 
PH51 

-
0.0
1 

-
0.0
1 --- 

-
0.0
1 

-
0.0
1 

0.0
0 

0.0
0 

0.0
2 

0.0
0 

0.0
1 

0.0
2 

0.0
1 0.00 

-
0.0
2 

-
0.0
2 

-
0.0
1 

-
0.0
1 

0.0
2 

indirect via 
PH68 

-
0.0
9 

-
0.0
6 

-
0.1
4 --- 

-
0.0
9 

0.0
0 

0.0
2 

0.1
0 

-
0.1
4 

-
0.0
1 

-
0.0
4 

0.1
3 -0.14 

-
0.1
8 

-
0.1
4 

-
0.1
2 

-
0.1
9 

0.0
9 

indirect via 
PH82 

-
0.2
8 

-
0.1
7 

-
0.1
5 

-
0.1
1 --- 

-
0.0
4 

-
0.1
5 

0.1
5 

-
0.0
2 

-
0.0
7 

0.1
6 

0.1
0 -0.02 

-
0.1
8 

-
0.2
2 

-
0.1
5 

-
0.0
4 

0.0
5 

indirect via 
PH107 

-
0.0
4 

0.0
3 

0.0
3 

0.0
0 

-
0.0
2 --- 

-
0.0
5 

-
0.0
3 

0.0
1 

0.0
5 

-
0.0
2 

-
0.0
2 0.05 

0.0
0 

0.0
1 

0.0
4 

0.0
4 

0.0
0 

indirect via 
PH128 

0.1
4 

0.0
4 

-
0.0
3 

-
0.0
2 

0.1
3 

0.0
6 --- 

0.0
4 

-
0.0
8 

0.0
6 

-
0.0
5 

0.1
0 -0.01 

0.0
3 

0.0
5 

0.0
0 

-
0.0
5 

0.1
2 

indirect via 
PH185 

-
0.0
3 

-
0.0
4 

-
0.0
6 

-
0.0
3 

-
0.0
3 

0.0
1 

0.0
1 --- 

0.0
0 

0.0
1 

0.0
4 

0.0
4 0.00 

-
0.0
4 

-
0.0
4 

-
0.0
2 

-
0.0
2 

0.0
5 
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indirect via 
FB68 

0.0
7 

0.0
4 

-
0.0
1 

0.1
2 

0.0
2 

-
0.0
1 

-
0.0
6 

0.0
0 --- 

0.0
8 

0.0
8 

-
0.0
3 0.11 

0.0
9 

0.0
9 

0.1
1 

0.1
1 

-
0.0
4 

indirect via 
FB82 

-
0.1
5 

0.0
0 

0.1
5 

-
0.0
1 

-
0.1
0 

0.1
1 

-
0.0
9 

-
0.0
8 

-
0.1
6 --- 

-
0.1
4 

0.0
2 -0.21 

0.0
4 

-
0.0
3 

-
0.1
8 

-
0.1
1 

-
0.1
0 

indirect via 
FB107 

-
0.1
3 

-
0.1
7 

-
0.1
6 

0.0
4 

-
0.1
3 

0.0
3 

-
0.0
5 

0.1
4 

0.1
0 

0.0
8 --- 

0.0
9 0.09 

-
0.1
1 

-
0.1
1 

0.0
4 

0.0
9 

0.0
8 

indirect via 
FB128 

0.0
4 

0.0
6 

0.1
2 

0.1
1 

0.0
7 

-
0.0
2 

-
0.0
8 

-
0.1
4 

0.0
3 

0.0
1 

-
0.0
8 --- 0.03 

0.1
1 

0.1
0 

0.0
7 

0.1
1 

-
0.1
3 

indirect via 
BOL185 

-
0.0
2 

0.0
0 

-
0.0
2 

-
0.0
6 

-
0.0
1 

0.0
3 

0.0
0 

0.0
1 

-
0.0
6 

-
0.0
5 

-
0.0
4 

0.0
2 --- 

-
0.0
4 

-
0.0
5 

-
0.0
8 

-
0.0
9 

0.0
2 

indirect via 
RE23 

0.0
4 

0.0
3 

0.0
4 

0.0
4 

0.0
3 

0.0
0 

0.0
1 

-
0.0
3 

0.0
2 

-
0.0
1 

-
0.0
2 

-
0.0
3 0.02 --- 

0.0
5 

0.0
3 

0.0
2 

-
0.0
3 

indirect via 
RE35 

-
0.3
9 

-
0.3
4 

-
0.2
6 

-
0.2
5 

-
0.3
2 

0.0
3 

-
0.0
9 

0.2
4 

-
0.2
0 

-
0.0
3 

0.1
9 

0.2
0 -0.20 

-
0.4
8 --- 

-
0.3
8 

-
0.1
3 

0.2
0 

indirect via 
RE53 

0.4
0 

0.3
2 

0.1
7 

0.3
5 

0.3
7 

-
0.1
6 

0.0
1 

-
0.2
6 

0.3
9 

0.3
2 

0.1
1 

-
0.2
5 0.57 

0.4
1 

0.6
1 --- 

0.5
5 

-
0.3
5 

indirect via 
RE91 

-
0.0
1 

0.0
0 

0.0
4 

0.1
0 

0.0
2 

-
0.0
3 

-
0.0
2 

-
0.0
3 

0.0
7 

0.0
3 

0.0
5 

-
0.0
7 0.11 

0.0
5 

0.0
4 

0.1
0 --- 

-
0.0
6 

indirect via 
RE168 

-
0.0
5 

-
0.1
0 

-
0.1
9 

-
0.1
0 

-
0.0
5 

0.0
0 

0.1
3 

0.2
2 

-
0.0
6 

0.0
7 

0.1
0 

0.1
8 -0.05 

-
0.1
6 

-
0.1
3 

-
0.1
4 

-
0.1
3 --- 

Total 
0.0
1 

-
0.2
1 

-
0.3
4 

0.0
0 

-
0.1
2 

-
0.0
9 

0.1
9 

0.3
3 

0.3
0 

0.2
3 

0.5
3 

0.1
9 0.31 

-
0.1
0 

0.0
0 

0.4
3 

0.3
1 

0.2
7 

 
The estimate of the coefficient of 

determination was of high magnitude (R² = 0.81) 
and indicates that more than 80% of the variation of 
cotton boll yield is explained by the phenological 
variables. The use of path analysis in cotton plants 
has been only used for breeding purposes (TYAGI 
et al., 1998; IQBAL et al., 2003; HOOGERHEIDE 
et al., 2007; FARIAS et al., 2016). 

The identification of the variables that have 
a cause and effect relationship with the main 
dependent variable (Y, in this study) requires the 
investigation of the direct effects obtained by the 
path analysis and the Person’s correlations. 
Variables with a high direct effect on Y, but with 
correlations in inverse magnitude to this effect 

should not be used as predictors. For instance, PH26 
has a high direct effect on Y; however, it has a low 
linear correlation. This result indicates that other 
variables interfere with this association by an 
indirect effect, as verified for PH82 and RE35. 

Therefore, the main variable that could be 
used to predict Y was RE53 since it has a high 
direct effect (0.92) and in the same direction of their 
correlation with the main dependent variable. The 
representativity of the vegetation indices can be 
explained by the relation between the maximum 
production of leaves and branches, the high 
photosynthetic activity for the production of fruits in 
RE53. It is possible to verify in Figure 3 that the 
variability of these variables has high similarity. 
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Figure 3. Red edge at 53 DAE (A) and cotton yield (D) maps of variability observed in sample points. 
 
Regression tree using the variables selected by 
path analysis 

After selecting the variables that have a 
cause and effect relationship (FB107, RE53, and 
RE91) on Y, a regression tree was constructed 
considering Y as the main dependent variable 

(Figure 4). This technique allows recognizing 
complex patterns to estimate a main dependent 
variable with continuous distribution (Y, in this 
study). The use of this technique to predict cotton 
boll yield up to now is still unprecedented. 

 

 
Figure 4. Decision tree generated with the variables FB, RE53, and RE91, selected by path analysis. 

 
This study used four nodes and provided a 

correlation between the estimated and observed 
values for Y of 0.72 at the training stage (80% of the 
data) and 0.73 at the validation stage (20 % of data). 
Results revealed credibility for Y prediction from 
the variables selected by the path analysis. 

Thus, to obtain the highest yields, the 
number of floral buds (FB) at 107 DAE must be 
higher than 13, and the vegetation index RE at 53 
DAE must be greater than 39 (Figure 2). If the 
estimate of this index is lesser than 39, the farmer 
needs to ensure a high number of floral buds to 
reach 260 @/ha. Therefore, the vegetation index 
RE53 is as a threshold for guiding crop yield 
estimates. 
 
 

CONCLUSIONS 
 

The number of floral buds at 107 days after 
emergence and the Rededge vegetation index 
measured at 53 and 91 days after emergence are the 
main variables to predict cotton boll yield. 

To obtain the highest cotton boll yield, the 
Rededge vegetation index must be greater than 39 at 
53 days after emergence and the plant must present 
at least 14 floral buds at 107 days after emergence. 
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RESUMO: O escalonamento de colheitas e a previsão de ganhos e perdas requerem estratégias que 
estimam a produtividade das culturas. Este trabalho teve como objetivo investigar a contribuição de variáveis 
fenológicas utilizando técnicas de análise de trilha e sensoriamento remoto sobre a produtividade de algodão 
em caroço e gerar um modelo utilizando árvores de decisão que ajudam a prever esta variável. O campo de 
amostragem foi instalado em Chapadão do Céu, em uma área de 90 ha. As seguintes variáveis fenológicas 
foram avaliadas em 30 pontos amostrais: altura das plantas aos 26, 39, 51, 68, 82, 107, 128 e 185 dias após a 
emergência (DAE); número de gemas florais aos 68, 81, 107, 128 e 185 DAE; número de cápsulas a 185 DAE; 
Índice de vegetação Rededge em 23, 35, 53, 91 e 168 DAE; e produção de algodão em caroço. As principais 
variáveis que podem ser utilizadas para prever a produção de caroço de algodão são o número de gemas florais 
(aos 107 dias após a emergência) e o índice de vegetação de Rededge (aos 53 e 91 dias após a emergência). 
Para obter maiores produtividades de algodão, o índice de vegetação de Rededge deve ser superior a 39 aos 53 
dias após a emergência e a planta deve apresentar pelo menos 14 gemas florais aos 107 dias após a emergência.  

 
PALAVRAS-CHAVE: Agricultura de precisão. Análise de trilha. Árvores de decisão. Gossypium 

hirsutum. 
 

 
REFERENCES 
 
AMARAL, L. R.; MOLIN, J. P.; PORTZ, G.; FINAZZI, F. B.; CORTINOVE, L. Comparison of crop canopy 
reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture, v. 16, n. 1, 
p. 15-28, 2015. https://doi.org/10.1007/s11119-014-9377-2 
 
BHERING, L. L. Rbio: a tool for biometric and statistical analysis using the R platform. Crop Breeding and 
Applied Biotechnology, v. 17, 187-190, 2017. https://doi.org/10.1590/1984-70332017v17n2s29 
 
CARVALHO, L. P.; FARIAS, F. J. C.; MORELLO, C. L.; RODRIGUES, J. I. S.; TEODORO, P. E. 
Agronomic and technical fibers traits in elite genotypes of cotton herbaceous. African Journal of Agricultural 
Research, v. 10, p. 4882-4887, 2015. https://doi.org/10.5897/AJAR2015.10515 
 
CRUZ, C. D.; REGAZZI, A. J. Modelos biométricos aplicados ao melhoramento genético. Viçosa: UFV. 
2012. 480 p. 
 
CRUZ, C. D. GENES - a software package for analysis in experimental statistics and quantitative genetics. 
Acta Scientiarum Agronomy, v.35, p.271-276, 2013. 
 
DILEO, M. V.; STRAHAN, G. D.; BAKKER, M. den; HOEKENGA, O. A. Weighted correlation network 
analysis (WGCNA) applied to the tomato fruit metabolome. PLoS ONE, v.6, e26683, 2011. 
https://doi.org/10.1371/journal.pone.0026683 
 
Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. Sistema brasileiro de classificação de solos. 
Brasília, DF: Embrapa, 2018. 
 
FARIAS, F. J. C.; CARVALHO, L. P.; SILVA FILHO, J. L.; TEODORO, P. E. Correlations and path analysis 
among agronomic and technological traits of upland cotton. Genetics and Molecular Research, v.15, n.3, 
gmr.15038239, 2016. https://doi.org/10.4238/gmr.15038239 
 
FREIRE, E. C. Algodão no cerrado do Brasil. 3.ed. Brasília: Editora Positiva, 2015. 956 p. 
 
 



1854 
In situ remote…  BAIO, F. H. R. et al. 

Biosci. J., Uberlândia, v. 35, n. 6, p. 1847-1854, Nov./Dec. 2019 
http://dx.doi.org/10.14393/BJ-v35n6a2019-42261 

HOOGERHEIDE, E. S. S.; VENCOVSKY, R.; FARIAS, F. J. C.; FREIRE, E. C.; ARANTES, E. M. 
Correlações e análise de trilha de caracteres tecnológicos e produtividade de fibra de algodão. Pesquisa 
Agropecuaria Brasileira, Brasília, v.42, n.10, p.1401-1405. 2007. https://doi.org/10.1590/S0100-
204X2007001000005 
 
IMEA – Instituto Mato-Grossense de Economia Agropecuária, Custo de Produção de Algodão 2017/2018, 
Disponível em <http://www.imea.com.br/upload/publicacoes/arquivos/20012017125427.pdf>. Acesso em: 02 
de abril de 2018. 
 
IQBAL, M.; CHANG, M. A.; IQBAL, M. Z. Correlation and path coefficient analysis of earliness and 
agronomic characters of upland cotton in Multan. Pakistan Journal of Agronomy, v.2, p.160-168, 2003. 
MONTGOMERY, D. C.; PECK. E. A. Introduction to linear regression analysis. 3 ed. New York: John 
Wiley & Sons, 2001. 504p. https://doi.org/10.3923/ja.2003.160.168 
 
MARUR, C. J.; RUANO, O. A reference system for determination of developmental stages of upland cotton. 
Revista Brasileira de Oleaginosas e Fibrosas, v. 5, n. 2, p. 313-317, 2001. 
 
MOTOMIYA, A. V. A; VALENTE, I. M. Q.; MOLIN, J. P.; MOTOMIYA, W. R.; BISCARO, G. A.; 
JORDAN, R. A. Índice de vegetação no algodoeiro sob diferentes doses de nitrogênio e regulador de 
crescimento. Semina: Ciências Agrárias, Londrina – PR, v. 35, n. 1, p. 169-178, 2014. 
https://doi.org/10.5433/1679-0359.2014v35n1p169 
 
PORTZ, G., MOLIN, J. P., JASPER, J. Active crop sensor to detect variability of nitrogen supply and biomass 
on sugarcane fields. Precision Agriculture, v. 13, n. 1, p. 33-44, 2012. https://doi.org/10.1007/s11119-011-
9243-4 
 
SANA, R. S.; ANGHINONI, I.; BRANDÃO, Z. N.; HOLZSCHUH, M. J. Variabilidade espacial de atributos 
físico-químicos do solo e seus efeitos na produtividade do algodoeiro. Revista Brasileira de Engenharia 
Agrícola e Ambiental, Campina Grande, v. 18, n. 10, p. 994-1002, 2014. https://doi.org/10.1590/1807-
1929/agriambi.v18n10p994-1002 
 
SALVADOR, A; ANTUNIASSI, U. R. Imagens aéreas multiespectrais na identificação de zonas de manejo em 
áreas de algodão para aplicação localizada de insumos. Revista Energia na Agricultura, v. 26, n. 2, p. 01-19, 
2011. https://doi.org/10.17224/EnergAgric.2011v26n2p01-19 
 
SILVA, A. R.; RÊGO, E. R.; PESSOA, A. M. S.; RÊGO, M. M. Correlation network analysis between 
phenotypic and genotypic traits of chili pepper. Correlation network analysis between phenotypic and 
genotypic traits of chili pepper. Pesquisa Agropecuária Brasileira, v.51, n.4, p.372-377, 2016. 
https://doi.org/10.1590/S0100-204X2016000400010 
 
SOUZA, H. B.; BAIO, F. H. R.; NEVES, D. C. Using passive and active multispectral sensors on the 
correlation with the phenological indices of cotton. Engenharia Agrícola, Jaboticabal, v. 37, n. 4, p. 782-789, 
2017. https://doi.org/10.1590/1809-4430-eng.agric.v37n4p782-789/2017 
 
TEODORO, P. E.; SILVA JUNIOR, C. A.; CORRÊA, C. C.; RIBEIRO, L. P.; OLIVEIRA, E. P.; LIMA, M. 
F.; TORRES, F. E. Path analysis and correlation of two genetic classes of maize (Zea mays L.). Journal of 
Agronomy, v. 13 n. 1, 1-23, 2014. https://doi.org/10.3923/ja.2014.23.28 
 
TYAGI, A.P.; MOR, B.R.; SINGH, D.P. Path analysis in upland cotton (G. hirsutum L.). Indian Journal of 
Agricultural Research, v.22, p.137-142, 1998. 
 
URSEM, R.; TIKUNOV, Y.; BOVY, A.; BERLOO, R. van; EEUWIJK, F. van. A correlation network 
approach to metabolic data analysis for tomato fruits. Euphytica, v.161, p.181-193, 2008. 
https://doi.org/10.1007/s10681-008-9672-y 
 


