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Resumo. A forma normal Hermite é similar a forma escalonada reduzida para matrizes com
entradas inteiras. Neste artigo sdo apresentados alguns resultados sobre esse tema, dentre os quais
destacamos o teorema da existé€ncia e unicidade, o qual afirma que toda matriz € linha equivalente
sobre os inteiros a uma, e somente uma, matriz na forma normal de Hermite. Um algoritmo para
calcular a forma normal Hermite de uma matriz por meio das operacdes elementares unimodulares
também ¢é fornecido. Por fim, s@o apresentados alguns conceitos e resultados preliminares de
reticulados, incluindo trés problemas que sdo respondidos utilizando a forma normal de Hermite,
a saber, o problema de determinar uma base de um reticulado e os problemas da igualdade e unido
de reticulados.

Palavras-chave. Forma normal de Hermite, matrizes unimodulares, reticulados.

THE HERMITE NORMAL FORM

Abstract. The Hermite normal form is similar of reduced echelon form for matrices with integer
entries. In this article some results on this topic are presented, among which we highlight the
existence and uniqueness Theorem, which states that every matrix is row equivalent to one, and
only one, matrix in the Hermite normal form. An algorithm for computing the Hermite normal
form of a matrix by the elementary unimodular operations is also given. Finally, some concepts
and preliminary results on lattices are presented, including three problems that are answered using
the Hermite normal form, namely, the problem of finding a basis of a lattice and the problems of
equality and union of lattices.

Keywords. Hermite normal form, unimodular matrices, lattices.

LA FORMA NORMAL DE HERMITE

Resumen. La forma normal de Hermite es andloga a la forma escalonada reducida para matrices
con entradas enteras. En este articulo se presentan algunos resultados relacionados con este tema,
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entre los cuales se destaca el teorema de existencia y unicidad, que establece que toda matriz es
equivalente por filas sobre los enteros a una, y solamente una, matriz en forma normal de Hermite.
Asimismo, se proporciona un algoritmo para calcular la forma normal de Hermite de una matriz
mediante operaciones elementales unimodulares. Finalmente, se presentan algunos conceptos y
resultados preliminares sobre reticulados, incluyendo tres problemas que se resuelven empleando
la forma normal de Hermite, a saber: el problema de determinar una base de un reticulado y los
problemas de igualdad y unién de reticulados.

Palabras clave. Forma normal de Hermite, matrices unimodulares, reticulados.

1 Introducao

A forma normal Hermite de uma matriz com entradas inteiras € uma matriz com carateristicas
semelhantes as matrizes na forma escalonada reduzida. Toda matriz A com entradas inteiras €
linha equivalente sobre os inteiros a uma, € somente uma, matriz na forma normal de Hermite,
a qual ¢ usualmente denotada por HNF(A). A seguir sdo apresentadas uma matriz e sua forma
normal de Hermite.

761 2 10 1 2
1 2 4 1 -1 2

A= |3 HNF(4) = |
2116 0 0 0 4
5416 00 0 0

Para determinar a forma normal de Hermite, basta aplicar convenientemente as trés operacoes
elementares unimodulares, as quais estao descritas a seguir: (1) permutacao de duas linhas; (i1)
substituicao de uma linha pela multiplicag¢do dela por —1; (iii) substitui¢do de uma linha por ela
mais um multiplo inteiro de outra. A forma normal de Hermite tem sido muito util em diversas
aplicacdes, tais como: na abordagem de problemas bésicos e nio basicos da drea de reticulados
[1], na proposi¢ao de sistemas criptograficos baseados em reticulados [2, [3], na resolugao de
sistemas de equacgdes diofantinas lineares [4]], etc.

Um reticulado é qualquer subgrupo aditivo e discreto de R". Equivalentemente, um reticu-
lado também pode ser descrito como o conjunto das combinacdes lineares inteiras das linhas de
uma matriz m X n, com m < n, de posto completo. Uma matriz nas condi¢des mencionadas
€ denominada uma matriz geradora e suas linhas uma base do reticulado. Para mais detalhes
sobre reticulados, sugerimos as referéncias [J5, 6].

Neste artigo € apresentado um resumo do trabalho de conclusao de curso da primeira autora,
o qual foi desenvolvido sob a orientacdo do segundo autor. Dentre os topicos abordados, des-
tacamos a forma normal de Hermite, o teorema da existéncia e unicidade, um algoritmo para o
calculo da forma normal de Hermite e conceitos e resultados basicos da area de reticulados, in-
cluindo trés problemas que sao respondidos utilizando a forma normal de Hermite (o problema
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da base, o problema da igualdade e o problema da unido).

2 Conceitos e resultados preliminares

Nesta secdo serdo apresentados os conceitos de matrizes unimodulares e matrizes linha equi-
valentes e, também, alguns resultados que serdo necessdrios para desenvolvimento das secdes
posteriores. As principais referéncias utilizadas na elaboracao desta secao foram [7]] e [8].

Uma matriz quadrada U com entradas inteiras ¢ dita unimodular se det(U) = +1. As
matrizes listadas abaixo sdo unimodulares.

110 2 1 0 2 -2

1 -1 —4 —~1 4 3
010 1 0 0

1 -2 -1 0 11
101 1 -1 1

2 11 3

Toda matriz unimodular € invertivel. De fato, o determinante de uma matriz unimodular €
sempre +1 e uma matriz € invertivel se, € somente se, seu determinante € diferente de 0. A
inversa de uma matriz unimodular € uma matriz unimodular. Uma demonstracdo deste tltimo
resultado pode ser encontrada em [9]]. Se U; e U, sdo matrizes unimodulares de mesma ordem,
entdo U - Us é uma matriz com entradas inteiras e det(U; - Uy) = det(U;) - det(Uy) = +1.
Em outras palavras, a matriz resultante do produto de duas matrizes unimodulares também ¢é
unimodular.

Definicao 1. Dada uma matriz A de ordem m x n com entradas inteiras, as seguintes operagoes
sdo denominadas operacoes elementares unimodulares sobre as linhas:

(i) Permutacdo de duas linhas da matriz;
(ii) Substituicdo de uma linha pela multiplicacdo dela por —1;
(iii) Substituicdo de uma linha por ela mais um miiltiplo inteiro de outra.

As operacOes elementares unimodulares sdo denotadas da seguinte foma: (1) A permutacao
das linhas 7 e j € indicada por L; <+ L;; (ii) A substitui¢cdo da linha 7 por ela multiplicada por
—1 é denotada por L; — —L;; (iii) Por fim, se ¢ # j e a € Z, a substituicdo da linha ¢ por ela
mais « vezes a linha j € indicada por L; — L; + aL;.

Definicao 2. Uma matriz é chamada de matriz elementar unimodular se ela pode ser obtida da

matriz identidade por meio de exatamente uma operagdo elementar unimodular.

Exemplo 1. A seguir estdo trés exemplos de matrizes elementares unimodulares.

010 1 0 0 1 00
100 01 O 0 10
001 00 -1 -2 0 1
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O préximo resultado mostra que as matrizes elementares unimodulares sao de fato matrizes
unimodulares.

Teorema 1. Se U é uma matriz elementar unimodular, entdo U é unimodular.

Demonstragdo. Seja U uma matriz elementar unimodular. Se U pode ser obtida a partir da
identidade por meio de uma operagdo elementar unimodular do tipo (i), entdo det(U) = —1. Se,
porém, U pode ser obtida a partir da identidade por meio de uma operacao elementar unimodular
do tipo (ii), entdo det(U) = —1. Por fim, se U pode ser obtida a partir da identidade por meio
de uma operacdo elementar unimodular do tipo (iii), entdo det(U) = 1. Por outro lado, U é
uma matriz com entradas inteiras. Logo, a matriz U € unimodular. [l

Dadas duas matrizes A ¢ B de ordem m X n com entradas inteiras, B pode ser obtida de A
por meio de um nimero finito de operagcdes elementares unimodulares se, e somente se, existe
uma matriz unimodular U de ordem m de modo que B = U A. Isto € uma consequéncia do fato
de que cada operacdo elementar unimodular corresponde a uma multiplicagdo a esquerda por
uma matriz elementar unimodular. Isto serd ilustrado no préximo exemplo.

Exemplo 2. Ao permutar a primeira e a segunda linha (L <> Lo) da matriz

0 1
A=11 2 31|,
1

w
-3

obtemos

1 2 3
C=11014
1 37

A matriz C é igual ao resultado do produto Uy A, em que U, é a matriz elementar unimodular

obtida da matriz identidade de ordem 3 permutando-se a primeira e segunda linha, isto é,

U=

o = O
o O =
_ o O

Ao multiplicar a terceira linha da matriz C por —1 (L3 — —Ls), obtemos

1 2 3
D = 0o 1 4 |,
-1 -3 -7

que € igual ao produto UsC, em que Uy é a matriz elementar unimodular obtida da matriz
identidade de ordem 3 multiplicando-se a terceira linha por —1, isto é,
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1 0 O
Us=101 0
00 -1

Ao somar a terceira linha da matriz D a primeira linha multiplicada por —2 (L3 — L3z —214),

obtemos
1 2 3
B = 0 1 4 ,
-3 =7 —-13

que é igual ao produto U3 D, em que Us é a matriz elementar unimodular obtida da matriz iden-
tidade de ordem 3 substituindo-se a terceira linha por ela mais a primeira linha multiplicada
por —2, isto é,

1
Us = 0
-2

S = O
— O O

Como C =U A, D =UsC e B =U;D, segue que
B =UsD = Us(UyC) = Us(Uy (U1 A)) = UA,

em que U = UsUyU,. Por fim, observe que U é unimodular, uma vez que é um produto de
matrizes unimodulares.

Definicao 3. Duas matrizes A e B sdo denominadas linha equivalentes sobre 7, e escrevemos

A ~ B, se existir uma matriz unimodular U tal que B = U A.

Exemplo 3. As matrizes A e B do Exemplo [2] sdo linha equivalentes sobre Z, pois existe uma
matriz unimodular U tal que B = U A.

O préximo teorema mostra que a relagdo definida acima € reflexiva, simétrica e transitiva,
ou seja, € uma relagcdo de equivaléncia.

Teorema 2. Sejam A, B e C matrizes de ordem m X n com entradas inteiras. Entdo,
(i) (Reflexiva) A ~ A;
(ii) (Simétrica) Se A ~ B, entdo B ~ A;
(iii) (Transitiva) Se A ~ Be B ~ C, entdo A ~ C.

Demonstragdo.  Sejam A, B e C' matrizes de ordem m x n com entradas inteiras. (7) Como
a matriz identidade I,,, é unimodular e A = I,,, A, segue que A ~ A. (ii) Suponha que A ~ B.
Assim, existe uma matriz unimodular U de ordem m tal que B = U A. Multiplicando a esquerda
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ambos os lados desta tltima igualdade por U~!, obtemos U !B = A. Como a inversa de uma
matriz unimodular é uma matriz unimodular, segue que B ~ A. (i7i) Suponha que A ~ B
e B ~ (C. Assim, existem matrizes unimodulares U; e Us; de ordem m tais que B = UjA e
C = UyB. Logo, C = UyB = Uy(U 1 A) = (UyUp)A = UsA, em que Uy = UyU,. Portanto,
A ~ C, uma vez que o produto de duas matrizes unimodulares é uma matriz unimodular. [

Teorema 3. Se A ~ B, entdo qualquer linha de A pode ser escrita como uma combinacdo

linear inteira das linhas de B.

Demonstragdo. Sejam A e B matrizes de ordem m X n, com entradas inteiras, tais que
A ~ B. Pelo item (i) do Teorema 2} temos que B ~ A, isto é, existe uma matriz unimodular
Utalque A= UB. Sejam i € {1,...,m} e e; a matriz de ordem 1 x m, cuja i-ésima entrada
€ igual a 1 e as demais entradas sdo iguais a 0. Como

e e;U € uma matriz linha com entradas inteiras, segue que a i-ésima linha de A pode ser escrita
como uma combinacdo linear inteira das linhas de B. [

O Teorema [3| garante que se duas matrizes sao linha equivalentes sobre Z, entdo cada linha
de uma delas pode ser escrita como uma combinagdo linear inteira das linhas da outra. A
demonstracdo do mesmo fornece implicitamente um método de como obter essa combinagao
linear, o qual serd ilustrado no Exemplo ]

Exemplo 4. Considere novamente as matrizes A, B e U do Exemplo 2| A relagdo entre elas
é B = UA. Para expressar, por exemplo, a terceira linha de B como uma combinagdo linear

inteira das linhas de A, basta efetuar os seguintes cdlculos:

1 2 3
3 7 —13]:[001}- 0 1 4
3 7 _13
01 0 01 4
=[001}- 1 0 0 1 23]]=
0 —2 —1 137
01 0 01 4 01 4
:[001]'100 -123:[0—2—1 12 3
0 —2 —1 13 7 13 7

Isto mostra que (—3,—7,—13) =0-(0,1,4) —2-(1,2,3) — 1-(1,3,7).
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3 A Forma Normal de Hermite

Uma matriz na Forma Normal de Hermite ¢ uma matriz num formato similar a Forma Esca-
lonada Reduzida (Defini¢do ). Um dos destaques desta sec¢do € o resultado que garante que
qualquer matriz com entradas inteiras é linha equivalente a uma, e somente uma, matriz na
Forma Normal de Hermite (Teorema 4)). Este resultado nos permite definir o que chamaremos
de Forma Normal de Hermite de uma matriz (Defini¢do [5). As principais referéncias utilizadas
na elaboracao desta secao foram [8], [10] e [11].

Definicio 4. Seja H = [h;;] uma matriz de ordem m x n com entradas inteiras. Dizemos que

H estd na Forma Normal de Hermite se existir um inteiro v, 0 < r < m, tal que:
(i) As ultimas m — r linhas de H sdo nulas;

(ii) Existem indices j1, jo, ..., Jr com1 < j1 < jo < --- < j, < n, de modo que as entradas
a esquerda de h;;, sdo iguais a zero e h;j, > 1;

(iii) Todas as entradas acima de h;;, sdo ndo negativas e menores do que h,;,.

Exemplo S. As seguintes matrizes estdo na Forma Normal de Hermite.

521 8
2 12 7

0305 006 1 00230 11 -2 000

0021 00050 6 7 000
000 10

0009 000 0 0000015 0 000

| 000 0|

Um subconjunto nao vazio de R" € linearmente independente se, € somente se, nenhum
de seus elementos pode ser escrito como uma combinacgdo linear, com coeficientes reais, dos
demais elementos. Para mais detalhes sobre conceitos e resultados de Algebra Linear, suge-
rimos a referéncia [[7/]. As linhas ndo nulas de uma matriz na forma normal de Hermite siao
linearmente independentes. Se /{ € uma matriz que satisfaz as condi¢des da Defini¢do 4} entdo
posto(H) = r. Por exemplo, as matrizes listadas no Exemplo [5[tém posto igual a 4,3,3 e 0,
respectivamente.

Os dois lemas a seguir estabelecem relacdes entre matrizes que sao linha equivalentes e
estdo na Forma Normal de Hermite. O objetivo destes resultados € simplificar a demonstracdo
do Teorema [l

Lema 1. Sejam H = [h;;] e H' = [h;;] matrizes na Forma Normal de Hermite tais que H ~ H'.
Temos que h;, é a primeira entrada ndo nula da i-ésima linha de H se, e somente se, h;; é a
primeira entrada ndo nula da i-ésima linha de H'.

Demonstragdo. Denote as linhas de H por hy, hy, ... h,, e asde H por h|, hy, ... hl .
Para cada ¢, a linha h; € ndo nula se, e somente se, a linha h; € nao nula, uma vez que H ¢ H’
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estdo na forma normal de Hermite e posto(H) = posto(H’). A ultima igualdade é garantida
pelo Teorema [3} pois H ~ H’. Seja k o nimero de linhas ndo nulas de cada uma das matrizes.
Para cadai € {1,...,k}, sejam h,;, e h, as primeiras entradas ndo nulas de h; e h;, respecti-
vamente. O objetivo é mostrar que j; = [;,Vi € {1,...,k}. Pelo Teorema a linha h, pode
ser escrita como uma combinagao linear inteira das linhas de H’, uma vez que H ~ H’'. Como
H e H' estao na forma normal de Hermite, segue que j; > ¢;. De forma analoga, observando
que a linha h} pode ser escrita como uma combinagdo linear inteira das linhas de H, obtemos
J1 < ty. Logo, j; = ¢1. Agora, sejal < i < keassumaque j; = {1,jo = o, ..., Ji_1 = ;1.
Suponha, por absurdo, que j; # ¢;. Sem perda de generalidade, podemos assumir que j; < ¢;.
Escreva

o AGi—iyxei s Ba—1)yx(n—ti_1)

)

Om—it1)xtior Clm—it1)x(n—t;_1)

onde 0,,—i11)x;, € a matriz nula. Por construgdo, as linhas de A sdo linearmente independentes.
Como j;, — 1 > {;_q, pois j; > j;_1 = ¥;_1, e as primeiras j; — 1 entradas da matriz h; sdo
iguais a zero, o Teorema |3|fornece que a linha h; pode ser escrita como uma combinacao linear
inteira das linhas da matriz

~

C = |: O(m_i-i,-l)xéi,l C(m—i—&—l)x(n—éi,l) :| .

Por outro lado, a matriz C' estd forma normal de Hermite e a primeira entrada ndo nula de sua
primeira linha € ¢14,, uma vez que suas linhas sdo h;,..., h . Logo, C' pode ser particionada
como

C = [ Otm—it1)x(ti—1)  Dm—it1)x(n—t:+1) }

e, portanto, as primeiras j; entradas de h; sdo nulas, uma vez que j; < /¢;. Isto contradiz a
hipétese h;;, # 0. [

Lema 2. Sejam H e H' matrizes na Forma Normal de Hermite. Se H ~ H’', entdo H = H'.

Demonstragdo. Sejam H = [h;] e H' = [hj;] matrizes de ordem m X n, ambas na Forma
Normal de Hermite, tais que H ~ H'. Suponha, por absurdo, que H # H'. Escolha h,;, #
h;,;, de modo que jo seja o menor possivel. Podemos assumir sem perda de generalidade que
Rigjo > Niyj,- Denote as linhas de H por hy, hy, ..., hy, e as de H por b, h),... k. As
primeiras jo — 1 entradas da matriz linha h;, — h; , $80 iguais a zero enquanto que a jo-€sima
entrada (isto €, hj,j, — I ;) € diferente de zero. Como H ~ H', o Teorema 3| garante que
h;o pode ser escrito como uma combinacdo linear inteira das linhas de . Consequentemente,
hi, — h;, também pode ser escrito como uma combinago linear inteira das linhas de H, uma
vez que h;, ¢ uma dessas linhas. Como H estd na Forma Normal de Hermite, existe um inteiro
k(1 <k < jo)tal que h;, — h , pode ser escrito como uma combinagdo linear inteira das linhas
hi,hii1, ..., b, (essas sdo exatamente as linhas que possuem as primeiras j, — 1 entradas

iguais a zero). A jo-€sima entrada de cada uma das linhas hy,4, ..., h,, também & igual a
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. ! /
zero. Assim, hiyj, — hj ijo

hij, # 0. Logo, hyj, € a primeira entrada ndo nula de hj, o que implica que hy;, > 0, as

= ahy;, para algum inteiro a. Como h,;, # h segue que

demais entradas da jy-ésima coluna de H sdo ndo negativas e hyj, > h;;, se ¢ # k, uma vez
que H estd na Forma Normal de Hermite. Dessa forma, tem-se o > 1, uma vez que hy;, > 0,

/
0< h’iojo — R

injo = Qthij, € a € Z. Consequentemente,

h — h/ = O-/hk:jo 2 hkjo Z hi()jO' (1)

10J0 1070

/

0J0

h;, > 0 para todo i pela forma normal de Hermite de H'. Assim h; ; > 0 e consequentemente

hi,;, = 0. Pela desigualdade temos que h;,;, = hij,, ou seja, ig = k. Pelo Lema 1,

/

hi,;, # 0. Absurdo. N

O préximo resultado serd de suma importancia na abordagem das aplica¢des que serdo apre-

Isto mostra que i ; < 0. Pelo Lema 1, hj; € a primeira entrada ndo nula da linha hj, portanto

sentadas neste artigo, uma vez que esta diretamente relacionado ao resultado que faz a conexao
entre matrizes na forma normal de Hermite e reticulados (Teorema [6)).

Teorema 4. Se A é uma matriz de ordem m X n com entradas inteiras, entdo existe uma tinica

matriz H na Forma Normal de Hermite que é linha equivalente a A.

Demonstragdo. (Existéncia) Seja A = [a;;] uma matriz com entradas inteiras. A
demonstracdo da existéncia da matriz H serd feita por inducdo sobre o nimero de colunas
de A. Se A é a matriz nula de ordem m x 1 ndo hd o que demonstrar. Suponha, entdo, que
A é uma matriz m X 1 n3o nula, com exatamente k entradas diferentes de zero. Sem perda
de generalidade, pelas operacdes (i) e (ii), podemos assumir que 0 < a7 < a9y < -+ < ap
ea; = 0,parai € {k+ 1,...,m}. Substituindo cada linha L; por L; — ¢;1L; (sendo ¢;;
o quociente da divisdo de a;; por ai1), com exce¢ao da primeira e das tltimas m — £ linhas,
obtemos a matriz coluna A; cujas primeiras entradas sao a1, 721, - - ., k1, onde r;; é o resto da
divisdo de a;; por aj;, e as demais sdo iguais a zero. Se r;; = 0, para todo i € {2,...,k},
temos o resultado desejado. Caso contrario, aplicamos o processo descrito acima a matriz Ay, e
repetimos se necessario, até obter o resultado desejado. Este processo finaliza ap6s um nimero
finito de etapas, pois as matrizes obtidas no decorrer do processo possuem entradas inteiras po-
sitivas, a primeira entrada € sempre maior do que as demais e menor do que a primeira entrada
da matriz da etapa anterior. Agora, suponha que A é uma matriz de ordem m x n,comn > 2, e
que o resultado € valido para toda matriz cujo nimero de colunas € menor do que n. Aplicando
convenientemente as operacdes elementares, de forma andloga ao caso n = 1, obtemos uma
matriz da forma
ap |Gz - aig

0

0
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na qual B é uma matriz com entradas inteiras de ordem (m — 1) X (n — 1). Assim, a hipétese
de inducdo garante que existe uma matriz H na Forma Normal de Hermite tal que B e H sio
linha equivalentes sobre Z. Logo, a matriz A € linha equivalente sobre Z a matriz

~

ail | @2 - Qin

0

0
Para obter a condig¢do (ii1) da Defini¢cdo 4} aplicamos no mdximo n — 1 operacdes elementares
unimodulares do tipo (iii) a primeira linha, de modo a obter H, que estd na Forma Normal de
Hermite.
(Unicidade) Agora, suponha que existem matrizes H e H' de ordem m x n, ambas na Forma
Normal de Hermite e linha equivalentes a A. Como H ~ Ae H' ~ A, o Teorema 2| garante
que H ~ H'. Pelo Lema 2, temos que H = H’, uma vez que ambas estdo na Forma Normal

de Hermite. Portanto, existe uma unica matriz // na Forma Normal de Hermite que € linha
equivalente a A. O

Definicao 5. A matriz H do Teorema | é chamada de Forma Normal de Hermite de A e é
denotada por HNF (A).

No restante desta secao € apresentado um algoritmo para o cdlculo da forma normal de
Hermite de uma matriz. Seja A uma matriz de ordem m X n com entradas inteiras. Se A € a
matriz nula, entdo HNF(A) = A, ou seja, ndo hd o que calcular. Suponha que A é ndo nula e
sua j;-ésima coluna seja a primeira ndo nula. Para obter a forma normal de Hermite, iniciamos
aplicando o algoritmo descrito a seguir e o repetimos até obtermos uma matriz cuja j;-ésima
coluna tenha exatamente uma entrada nao nula.

1. Escolher uma entrada da j;-ésima coluna que tenha o menor valor absoluto diferente de
zero. Digamos que a entrada escolhida seja a;, j, .

2. Paracadai, 1 <1i < met # i, determinar os inteiros g; e r; tais que a;j, = ¢;a;,;, +7;
e 0 <1 < lai;|- A existéncia e unicidade de tais inteiros é garantida pelo Teorema da

Divisao [12].

3. Substituir cada linha L;, com 1 < i < me < # iy, por L; — ¢; L, .

Em seguida, se necessdrio, aplicar as operacdes elementares (i) e (ii) para que a primeira
entrada da j;-ésima coluna da matriz obtida seja positiva.
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Exemplo 6. Seja

76 1 2
A:3124
2116
5416

A primeira coluna de A é ndo nula e a entrada as, é a que possui o menor valor absoluto
diferente de zero. Substituindo as linhas Ly, Lo e Ly, respectivamente, por Ly — 3L3, Lo — L3
eLy—2L3(pois7T=3-24+1,3=1-2+1e5=2-2+41), obtemos

1 3 -2 -16
10 1 =2
21 1 6

1 2 -1 -6

As entradas da primeira coluna da matriz obtida no passo anterior que possuem o menor valor
absoluto diferente de zero sdo ayy, as1 e ayqy. Para dar seguimento ao algoritmo, escolhemos
a1 e, consequentemente, substituimos as linhas Lo, L3 e Ly por Ly — Ly, Ly — 2Ly e Ly — Ly,
respectivamente (pois 1 =1-140,2=2-140e1 =1-1+0). Dessa forma, obtemos a

matriz
1 3 -2 -16
0 -3 3 14
0O -5 5 38
0O -1 1 10

Com isso, a primeira etapa é finalizada, pois hd apenas uma entrada diferente de zero na

primeira coluna e essa encontra-se na primeira linha.

Finalizada a primeira etapa, passamos para a segunda etapa. Suponha que a j,-ésima coluna
da matriz obtida na primeira etapa seja a primeira coluna cujas entradas, a partir da segunda,
sejam nao todas nulas. A segunda etapa consiste em repetir o algoritmo descrito abaixo até
obtermos uma matriz cuja jo-€sima coluna tenha exatamente uma entrada nao nula a partir da
segunda.

1. Escolher uma entrada da j,-€sima coluna, a partir da segunda, que tenha o menor valor
absoluto diferente de zero. Digamos que a entrada escolhida seja a;, ;, .

2. Paracadai, 2 < ¢ < m e i # iy, determinar os inteiros ¢; € r; de modo que a;;, =
Qiiyj, + 1€ 0 < 1; < ai,j,|. A existéncia e unicidade de tais inteiros é garantida pelo
Teorema da Divisao [12].

3. Substituir cada linha L;, com 2 < i < m e # ig, por L; — q; L;,.
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Em seguida, se necessario, aplicar as operagdes elementares (i) e (i1) para que a segunda entrada
da j,-ésima coluna da matriz obtida seja positiva.

Exemplo 7. Considere a matriz obtida no Exemplo 6] isto é,

1 3 -2 -16
0 -3 3 14
0 -5 5 38
0 -1 1 10

A segunda coluna dessa matriz é a primeira cujas entradas, a partir da segunda, ndo sdo todas
nulas e a entrada ass é a que possui o menor valor absoluto diferente de zero. Substituindo
as linhas Ly e Ly por Ly — 3Ly e Ly — 5Ly, respectivamente (pois —3 = 3 - (—1) + 0 e
—5="5-(—1)+0), obtemos

1 3 -2 -16
0O 0 0 -16
0O 0 0 -12
0 -1 1 10

Aplicando a operacdo elementar Ly <> Ly e, em seguida, Lo — — Lo, obtemos

1 3 -2 -16
01 -1 —-10
00 0 =12
00 0 -16

Isto conclui a segunda etapa.

Finalizada a segunda etapa, passamos para a terceira etapa. Suponha que a js-ésima coluna
da matriz obtida na segunda etapa seja a primeira coluna cujas entradas, a partir da terceira,
sejam nao todas nulas. A terceira etapa consiste em repetir o algoritmo descrito abaixo até
obtermos uma matriz cuja js3-ésima coluna tenha exatamente uma entrada ndo nula a partir da
terceira.

1. Escolher uma entrada da j3-€sima coluna, a partir da terceira, que tenha o menor valor
absoluto diferente de zero. Digamos que a entrada escolhida seja a;3;3.

2. Paracada i, 3 < i < m e # i3, determinar os inteiros ¢; € r; de modo que a;;, =
Qiiyss + 1€ 0 < 1r; < |a,;,|. A existéncia e unicidade de tais inteiros é garantida pelo
Teorema da Divisao [12].

3. Substituir cada linha L;, com 3 < i < me1 # i3, por L; — ¢; L

i3
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Em seguida, se necessario, aplicar as operagdes elementares (i) e (ii) para que a terceira entrada
da j3-ésima coluna da matriz obtida seja positiva.

Exemplo 8. Considere a matriz obtida no Exemplo|7} isto é,

1 3 -2 -16
01 -1 -10
00 0 -—12
00 0 -16

A quarta coluna dessa matriz é a primeira cujas entradas, a partir da terceira, ndo sdo todas
nulas e a entrada asy é a que possui o menor valor absoluto diferente de zero. Substituindo a
linha Ly por Ly — 2L3 (pois —16 = 2 - (—12) + 8), obtemos

1 3 =2 —-16
01 -1 -10
00 0 -12
00 O 8

A entrada da quarta coluna da matriz obtida no passo anterior, a partir da terceira, que possui

o menor valor absoluto diferente de zero é asy. Substituindo a linha Ls por Ls + 2L, (pois
—12 = (—2) - 8 + 4), obtemos

1 3 -2 -16
01 -1 —-10
00 O 4
00 O 8

A entrada da quarta coluna da matriz obtida no passo anterior, a partir da terceira, que possui
o menor valor absoluto diferente de zero é asy. Substituindo a linha Ly por Ly — 2L3 (pois
8 =2-4+40), obtemos

1 3 -2 -16
01 -1 -10
00 O 4
00 O 0

Isto conclui a terceira etapa.

Continuando este processo, apds no miximo m etapas, obtemos um inteiro r, 1 < r < m,
e uma matriz cujas ultimas m — r linhas sdo nulas, as entradas a esquerda de a;;, sdo iguais a
zero e a;j, > 1 paratodo i € {1,2,...,7}, ou seja, uma matriz que satisfaz as condigdes (i) e
(ii) da Defini¢do

Para obter a forma normal de Hermite de A, a partir da matriz obtida no processo descrito
acima, basta aplicar o seguinte algoritmo (iniciar com k = 2): Para cada 1 < k, se a;;, > agj,
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ou a;j, < 0, substituir a linha L, por L; — L; — q; L, em que g; € o quociente da divisdo de a;;,
por aj,. Em seguida, substituir £ por k + 1. Retornar ao inicio se £ + 1 < r e finalizar caso
contrario. Este processo serd ilustrado no proximo exemplo.

Exemplo 9. Considere a matriz obtida no Exemplo |8} isto é,

1 3 -2 -16
01 -1 —-10
00 O 4
00 O 0

Como ay é maior do que asy e esta iltima é a entrada a,,j,, substituimos a linha L, por
Ly — 3L, pois 3 = 3 -1+ 0. Dessa forma, obtemos

10 1 14
01 -1 —-10
00 O 4
00 O 0

Como as novas entradas a4 e asy possuem valor absoluto maior que asy e esta iltima é a
entrada a;,j,, substituimos as linhas Ly e Ly por Ly — 3L3 e Ly + 3Ls, respectivamente (pois
14=3-4+2e—10 = (—3) -4+ 2). Apds efetuar as substitui¢des indicadas, obtemos a forma

normal de Hermite da matriz A definida no Exemplo |6} a saber,

10 1 2
01 -1 2
HNF(A) = 00 0 4
00 0 O

4 Aplicacoes

Nesta secao, a forma normal de Hermite serd utilizada na abordagem de trés problemas bésicos
do contexto de reticulados, sdo eles: o problema de determinar uma base de um reticulado e os
problemas da igualdade e unido de reticulados. As principais referéncias desta secdo sao [ e
[1]].

Um reticulado € qualquer subgrupo aditivo e discreto de R"™. Equivalentemente, um sub-
conjunto A de R”, A # {0}, é um reticulado se, e somente se, existem vetores by, ..., b,, € R"
linearmente independentes de modo que

A={abi + -+ anby; aq,...,an € Z}.

Na descri¢do acima, o conjunto {by,...,b,,} é denominado uma base de A. No exemplo a
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seguir € apresentado um reticulado e algumas bases do mesmo.

Exemplo 10. Seja A C R? o reticulado gerado pela base {u,,v,}, em que u; = (2,3) e
vy = (2,4). Esse reticulado tem infinitas bases. Na Figural|l|estdo ilustradas trés bases de A,
a saber, {u1,v1}, {us,va} e {us,v3}, em que uy = (—2,1), vo = (—4,1), uz = (—2,2) e
v3 = (—2,3). Para verificar que essas sdo de fato bases de A, basta aplicar o Teorema |z] que
veremos mais adiante.

Figura 1: Bases do reticulado A.

° ° . y . . .

L L ° [ ] [ ]
1

° . U3 . .
Ui

us
[ ] L J L 2 { 3 [ ]
() u9
° . . .
X
0
L] L] L] L] L] [ ]

Fonte: Os autores.

E importante ressaltar que nem todo conjunto constituido por dois vetores do reticulado A,
linearmente independentes, formam uma base do mesmo. Por exemplo, os vetores us = (—2, 1)
e v3 = (—2, 3) sdo linearmente independentes e pertencem a A\, mas ndo formam uma base de
A. De fato, o vetor us = (—2,2) pertence a \ e ndo pode ser escrito como uma combina¢do
linear inteira deles, uma vez que us = %UQ + %’03.

A quantidade de elementos de uma base de um reticulado € invariante, isto é, duas bases de
um mesmo reticulado possuem o mesmo nimero de elementos. Isso nos permite definir o posto
de um reticulado como o nimero de vetores de uma base qualquer do mesmo. Dizemos que um
reticulado A C R” tem posto completo se possui posto igual a n. O reticulado apresentado no
Exemplo [10] tem posto completo.

Dados um reticulado A C R™ e uma base {by, ..., b,,} de A tal que b; = (b;1, ..., by, para
i€ {l,...,m}, amatriz

bll b12 bln
B— b21 b22 b2n
bml bm2 bmn
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¢ denominada uma matriz geradora de A. Neste caso, escrevemos A = A(B). Este reticulado
pode ser representado matricialmente por

A(B) ={uB; u € Myn(Z)}.

Em outras palavras, um elemento b pertence ao reticulado A(B) se, e somente se, b pode
ser escrito como uma combinagdo linear inteira das linhas da matriz B. Na descri¢do acima, o
simbolo M., (Z) denota o conjunto das matrizes com entradas inteiras de ordem 1 x m. Temos
que B; e B, sdo matrizes geradoras de A se, e somente se, existe uma matriz unimodular U tal
que By = U DBy [5,[9].

Teorema 5. Sejam B, e By matrizes de ordem m x n (m < n) com entradas inteiras e posto

completo. Temos que
A(Bl> - A(BQ) <~ Bl ~ BQ.

Demonstracdo. (=) Sejam B; e By matrizes de ordem m X n, m < n, com entradas inteiras
e posto completo. Suponha que A(B;) = A(Bz). Assim, existe uma matriz unimodular U tal
que By, = UB; e, logo, By ~ Bs. (<) Sejam B; e B, matrizes com entradas inteiras tais que
By ~ B,. Assim, existe uma matriz unimodular U tal que B, = U B;. Isto implica que B; e
B, geram o mesmo reticulado, isto é, A(B;) = A(By). O

O préximo resultado estabelece uma conexao entre a forma normal de Hermite e reticulados.
Este serd de grande importancia na abordagem das aplicacdes que serdo apresentadas neste
artigo.

Teorema 6. Todo reticulado contido em 7" possui uma, e somente uma, matriz geradora na
forma normal de Hermite.

Demonstragdo.  Sejam A um reticulado e B uma matriz geradora de A. O Teorema 4] garante
que existe uma matriz H na forma normal de Hermite tal que H ~ B, o que implica que H ¢é
uma matriz geradora de A. Logo, todo reticulado possui uma matriz geradora na Forma Normal
de Hermite. A unicidade é garantida pelo Lema 0

No que segue serdo abordados trés problemas basicos do contexto de reticulados utilizando
a forma normal de Hermite. Inicialmente serda apresentado o problema da base, que consiste
em determinar uma base de um reticulado a partir de um conjunto de geradores. Com efeito,
dados vetores by,...,b,, € Z", ndo necessariamente linearmente independentes, considere
A ={a1bi+ - Famby; ai, ..., a, € Z}. Pode-se verificar facilmente que A € um reticulado.
Para determinar uma base de A, basta calcular HNF(A), em que A é a matriz de ordem m x n
cujas linhas sdo by, . . ., b,,. Como HNF(A) ~ A, cada um dos elementos de A pode ser escrito
como uma combinagdo linear inteira das linhas de HNF(A). Portanto, as linhas ndo nulas de
HNF(A) formam uma base de A.

Exemplo 11. Sejam by = (7,6,1,2), by = (3,1,2,4), by = (2,1,1,6), by = (5,4,1,6) e
A = {a1b; + asby + azbs + ayby; oy, ag, a3, ay € Z}. Considere a matriz A cujas linhas sdo
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b1, by, bs e by, respectivamente. Pelo Exemplo@ temos que

10 1 2
01 -1 2
HNFAY =100 0 4
00 0 0

Logo, {(1,0,1,2),(0,1,—1,2),(0,0,0,4)} é uma base de A.

Agora, serd abordado o problema da igualdade, que consiste em determinar se duas matri-
zes com entradas inteiras sdo matrizes geradoras do mesmo reticulado. O préximo resultado
soluciona este problema, uma vez que ele garante que duas matrizes com entradas inteiras sao
matrizes geradoras de um mesmo reticulado se, e somente se, elas possuem a mesma forma
normal de Hermite.

Teorema 7. Sejam B, e By matrizes de ordem m x n, m < n, com entradas inteiras e posto
completo. Temos que

Demonstracdo. (=) Como A(B;) = A(By), o Teorema [5] garante que B; ~ B,. Por
outro lado, o Teoremad] garante que B; ~ HNF(B;) e B, ~ HNF(Bs). Logo, pelo Teorema 2]
HNF(B;) ~ HNF(B,). Aplicando o Lema[2] obtemos HNF(B;) = HNF(B5). (<) Suponha
que HNF(B;) = HNF(By). Logo, A(HNF(B;)) = A(HNF(B3)). Como B; ~ HNF(B;) e
By ~ HNF(Bs), segue que A(B;) = A(HNF(By)) e A(By) = A(HNF(B,)), respectivamente.

Portanto, A(B;) = A(Bs). O
Exemplo 12. Sejam

211 1 1
By — 8 2 4 B, — 2 ¢ B, = 1 .
4 0 2 -6 -1 -3 2 1 -1 2

O Teoremal7| garante que A(B1) = A(Bs) e A(Bs) # A(By), uma vez que
211
0 20

= HNF(By).

B, =

HNF(B;) = HNF(By) =

1 2 11
0 3 ] 7 [ 0 3

A unido de dois reticulados nem sempre € um reticulado. De fato, basta observar que A; =
{(2k,s); k,s € Z} e Ay = {(3k,s); k,s € Z} sdo reticulados em R?, mas A; U Ay ndo é

HNF(Bs) =
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um reticulado (Figura . E um conjunto discreto, mas nio é um subgrupo aditivo de R?, pois
(2,0),(3,0) € Ay UAse (1,0) = (3,0) — (2,0) ¢ Ay U As. Dados dois reticulados, ambos
contidos em Z", o problema da unido consiste em determinar uma base para o menor reticulado
que os contém. O préximo resultado juntamente com a soluc¢do do problema da base fornecem
uma solucgdo para este problema.

Figura 2: A; U A5 ndo € um reticulado.

y

Fonte: Os autores.

Teorema 8. Sejam B e B matrizes com entradas inteiras de ordem k x n e m x n (k <ne
m < n), respectivamente. Se B e B tem posto completo (isto é, possuem linhas linearmente
independentes) e A é o menor reticulado que contém A(B) e A(B), entdo A é constituido por
todas as combinagoes lineares inteiras das linhas da matriz

a— |5

Demonstragdo. Seja W o subespaco vetorial de R™ gerado pelas linhas de A. Como
A := AN é um reticulado que contém A(B) e A(B) e estd contido em A, segue que A = A
e A C W, uma vez que A é o menor reticulado que contém A(B) e A(B). Assim, para
cada elemento v de A, existem nimeros reais xi,..., Ty € Y1, ..., Yn tais que v = xr1b; +
-+ xpby —|—y151 +---+ym5m, emque {by,...,b;} e {51,...,I3m} 50 as linhas de B e B,
respectivamente. Por outro lado, z1by + - -- 4+ 2by € A(B) e y1by + -+ + ymb,, € A(B).
Assim, existem inteiros vy, ..., ax € By, ..., By taisque x1by +- - - +xpbr, = ayby +- - -+ by,
eylf)l +-~-+ym5m = Byby + - + Bimby, isto é, (x1 —ag)by + -+ (2 — )b, =0 e
(y1 — ,61)51 +- 4 (Y — ,Bm)Bm = 0. Logo, z1,..., Tk €Y1, - . ., Ym SAO inteiros, uma vez que
por hipétese {by, ..., by} e {bi,..., by} sio conjuntos linearmente independentes. Isto mostra
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que todo elemento de A pode ser escrito como uma combinagdo linear inteira das linhas da
matriz A. Reciprocamente, se v € uma combinagao linear inteira das linhas de A, entdo existem
u € A(B) e @ € A(B) tais que v = u + 4. Como A(B) e A(B) sido subconjuntos de A, segue
que v, pois A é um subgrupo de R™. ]

Exemplo 13. Sejam

B_ 7T 6 1 2 e B— 2116 '
31 2 4 5 416
Considere a matriz
76 1 2
. Bi _ 31 2 4
B 2116
5 416
Pelos Exemplos|6] [/ [8|e[9 a forma normal de Hermite de A é
10 1 2
01 -1 2
00 0 4
00 0 O

Logo, {(1,0,1,2),(0,1,—1,2),(0,0,0,4)} é uma base do menor reticulado que contém \(B)
e A(B).

Além das trés aplicacdes apresentadas, existem vdrias outras tanto basicas como ndo bésicas,
algumas delas estao listadas na referéncia [1]].
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