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Resumo. A forma normal Hermite é similar à forma escalonada reduzida para matrizes com
entradas inteiras. Neste artigo são apresentados alguns resultados sobre esse tema, dentre os quais
destacamos o teorema da existência e unicidade, o qual afirma que toda matriz é linha equivalente
sobre os inteiros a uma, e somente uma, matriz na forma normal de Hermite. Um algoritmo para
calcular a forma normal Hermite de uma matriz por meio das operações elementares unimodulares
também é fornecido. Por fim, são apresentados alguns conceitos e resultados preliminares de
reticulados, incluindo três problemas que são respondidos utilizando a forma normal de Hermite,
a saber, o problema de determinar uma base de um reticulado e os problemas da igualdade e união
de reticulados.

Palavras-chave. Forma normal de Hermite, matrizes unimodulares, reticulados.

THE HERMITE NORMAL FORM

Abstract. The Hermite normal form is similar of reduced echelon form for matrices with integer
entries. In this article some results on this topic are presented, among which we highlight the
existence and uniqueness Theorem, which states that every matrix is row equivalent to one, and
only one, matrix in the Hermite normal form. An algorithm for computing the Hermite normal
form of a matrix by the elementary unimodular operations is also given. Finally, some concepts
and preliminary results on lattices are presented, including three problems that are answered using
the Hermite normal form, namely, the problem of finding a basis of a lattice and the problems of
equality and union of lattices.

Keywords. Hermite normal form, unimodular matrices, lattices.

LA FORMA NORMAL DE HERMITE

Resumen. La forma normal de Hermite es análoga a la forma escalonada reducida para matrices
con entradas enteras. En este artı́culo se presentan algunos resultados relacionados con este tema,
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entre los cuales se destaca el teorema de existencia y unicidad, que establece que toda matriz es
equivalente por filas sobre los enteros a una, y solamente una, matriz en forma normal de Hermite.
Asimismo, se proporciona un algoritmo para calcular la forma normal de Hermite de una matriz
mediante operaciones elementales unimodulares. Finalmente, se presentan algunos conceptos y
resultados preliminares sobre reticulados, incluyendo tres problemas que se resuelven empleando
la forma normal de Hermite, a saber: el problema de determinar una base de un reticulado y los
problemas de igualdad y unión de reticulados.

Palabras clave. Forma normal de Hermite, matrices unimodulares, reticulados.

1 Introdução

A forma normal Hermite de uma matriz com entradas inteiras é uma matriz com caraterı́sticas
semelhantes às matrizes na forma escalonada reduzida. Toda matriz A com entradas inteiras é
linha equivalente sobre os inteiros a uma, e somente uma, matriz na forma normal de Hermite,
a qual é usualmente denotada por HNF(A). A seguir são apresentadas uma matriz e sua forma
normal de Hermite.

A =


7 6 1 2

3 1 2 4

2 1 1 6

5 4 1 6

 HNF(A) =


1 0 1 2

0 1 −1 2

0 0 0 4

0 0 0 0


Para determinar a forma normal de Hermite, basta aplicar convenientemente as três operações
elementares unimodulares, as quais estão descritas a seguir: (i) permutação de duas linhas; (ii)
substituição de uma linha pela multiplicação dela por−1; (iii) substituição de uma linha por ela
mais um múltiplo inteiro de outra. A forma normal de Hermite tem sido muito útil em diversas
aplicações, tais como: na abordagem de problemas básicos e não básicos da área de reticulados
[1], na proposição de sistemas criptográficos baseados em reticulados [2, 3], na resolução de
sistemas de equações diofantinas lineares [4], etc.

Um reticulado é qualquer subgrupo aditivo e discreto de Rn. Equivalentemente, um reticu-
lado também pode ser descrito como o conjunto das combinações lineares inteiras das linhas de
uma matriz m × n, com m ≤ n, de posto completo. Uma matriz nas condições mencionadas
é denominada uma matriz geradora e suas linhas uma base do reticulado. Para mais detalhes
sobre reticulados, sugerimos as referências [5, 6].

Neste artigo é apresentado um resumo do trabalho de conclusão de curso da primeira autora,
o qual foi desenvolvido sob a orientação do segundo autor. Dentre os tópicos abordados, des-
tacamos a forma normal de Hermite, o teorema da existência e unicidade, um algoritmo para o
cálculo da forma normal de Hermite e conceitos e resultados básicos da área de reticulados, in-
cluindo três problemas que são respondidos utilizando a forma normal de Hermite (o problema
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da base, o problema da igualdade e o problema da união).

2 Conceitos e resultados preliminares

Nesta seção serão apresentados os conceitos de matrizes unimodulares e matrizes linha equi-
valentes e, também, alguns resultados que serão necessários para desenvolvimento das seções
posteriores. As principais referências utilizadas na elaboração desta seção foram [7] e [8].

Uma matriz quadrada U com entradas inteiras é dita unimodular se det(U) = ±1. As
matrizes listadas abaixo são unimodulares.

[
1 −1

1 −2

]  1 1 0

0 1 0

1 0 1


 −2 1 0

1 0 0

−1 −1 1



−2 −1 2 2

−4 −1 4 3

−1 0 1 1

−2 −1 1 3


Toda matriz unimodular é invertı́vel. De fato, o determinante de uma matriz unimodular é
sempre ±1 e uma matriz é invertı́vel se, e somente se, seu determinante é diferente de 0. A
inversa de uma matriz unimodular é uma matriz unimodular. Uma demonstração deste último
resultado pode ser encontrada em [9]. Se U1 e U2 são matrizes unimodulares de mesma ordem,
então U1 · U2 é uma matriz com entradas inteiras e det(U1 · U2) = det(U1) · det(U2) = ±1.
Em outras palavras, a matriz resultante do produto de duas matrizes unimodulares também é
unimodular.

Definição 1. Dada uma matrizA de ordemm×n com entradas inteiras, as seguintes operações
são denominadas operações elementares unimodulares sobre as linhas:

(i) Permutação de duas linhas da matriz;

(ii) Substituição de uma linha pela multiplicação dela por −1;

(iii) Substituição de uma linha por ela mais um múltiplo inteiro de outra.

As operações elementares unimodulares são denotadas da seguinte foma: (i) A permutação
das linhas i e j é indicada por Li ↔ Lj; (ii) A substituição da linha i por ela multiplicada por
−1 é denotada por Li → −Li; (iii) Por fim, se i 6= j e α ∈ Z, a substituição da linha i por ela
mais α vezes a linha j é indicada por Li → Li + αLj .

Definição 2. Uma matriz é chamada de matriz elementar unimodular se ela pode ser obtida da
matriz identidade por meio de exatamente uma operação elementar unimodular.

Exemplo 1. A seguir estão três exemplos de matrizes elementares unimodulares. 0 1 0

1 0 0

0 0 1


 1 0 0

0 1 0

0 0 −1


 1 0 0

0 1 0

−2 0 1


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O próximo resultado mostra que as matrizes elementares unimodulares são de fato matrizes
unimodulares.

Teorema 1. Se U é uma matriz elementar unimodular, então U é unimodular.

Demonstração. Seja U uma matriz elementar unimodular. Se U pode ser obtida a partir da
identidade por meio de uma operação elementar unimodular do tipo (i), então det(U) = −1. Se,
porém, U pode ser obtida a partir da identidade por meio de uma operação elementar unimodular
do tipo (ii), então det(U) = −1. Por fim, se U pode ser obtida a partir da identidade por meio
de uma operação elementar unimodular do tipo (iii), então det(U) = 1. Por outro lado, U é
uma matriz com entradas inteiras. Logo, a matriz U é unimodular.

Dadas duas matrizes A e B de ordem m× n com entradas inteiras, B pode ser obtida de A
por meio de um número finito de operações elementares unimodulares se, e somente se, existe
uma matriz unimodular U de ordem m de modo que B = UA. Isto é uma consequência do fato
de que cada operação elementar unimodular corresponde a uma multiplicação à esquerda por
uma matriz elementar unimodular. Isto será ilustrado no próximo exemplo.

Exemplo 2. Ao permutar a primeira e a segunda linha (L1 ↔ L2) da matriz

A =

 0 1 4

1 2 3

1 3 7

 ,
obtemos

C =

 1 2 3

0 1 4

1 3 7

.

A matriz C é igual ao resultado do produto U1A, em que U1 é a matriz elementar unimodular
obtida da matriz identidade de ordem 3 permutando-se a primeira e segunda linha, isto é,

U1 =

 0 1 0

1 0 0

0 0 1

.

Ao multiplicar a terceira linha da matriz C por −1 (L3 → −L3), obtemos

D =

 1 2 3

0 1 4

−1 −3 −7

,

que é igual ao produto U2C, em que U2 é a matriz elementar unimodular obtida da matriz
identidade de ordem 3 multiplicando-se a terceira linha por −1, isto é,
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U2 =

 1 0 0

0 1 0

0 0 −1

.

Ao somar à terceira linha da matriz D a primeira linha multiplicada por−2 (L3 → L3−2L1),
obtemos

B =

 1 2 3

0 1 4

−3 −7 −13

,

que é igual ao produto U3D, em que U3 é a matriz elementar unimodular obtida da matriz iden-
tidade de ordem 3 substituindo-se a terceira linha por ela mais a primeira linha multiplicada
por −2, isto é,

U3 =

 1 0 0

0 1 0

−2 0 1

.

Como C = U1A, D = U2C e B = U3D, segue que

B = U3D = U3(U2C) = U3(U2(U1A)) = UA,

em que U = U3U2U1. Por fim, observe que U é unimodular, uma vez que é um produto de
matrizes unimodulares.

Definição 3. Duas matrizes A e B são denominadas linha equivalentes sobre Z, e escrevemos
A ∼ B, se existir uma matriz unimodular U tal que B = UA.

Exemplo 3. As matrizes A e B do Exemplo 2 são linha equivalentes sobre Z, pois existe uma
matriz unimodular U tal que B = UA.

O próximo teorema mostra que a relação definida acima é reflexiva, simétrica e transitiva,
ou seja, é uma relação de equivalência.

Teorema 2. Sejam A, B e C matrizes de ordem m× n com entradas inteiras. Então,

(i) (Reflexiva) A ∼ A;

(ii) (Simétrica) Se A ∼ B, então B ∼ A;

(iii) (Transitiva) Se A ∼ B e B ∼ C, então A ∼ C.

Demonstração. Sejam A, B e C matrizes de ordem m× n com entradas inteiras. (i) Como
a matriz identidade Im é unimodular e A = ImA, segue que A ∼ A. (ii) Suponha que A ∼ B.
Assim, existe uma matriz unimodularU de ordemm tal queB = UA. Multiplicando à esquerda
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ambos os lados desta última igualdade por U−1, obtemos U−1B = A. Como a inversa de uma
matriz unimodular é uma matriz unimodular, segue que B ∼ A. (iii) Suponha que A ∼ B

e B ∼ C. Assim, existem matrizes unimodulares U1 e U2 de ordem m tais que B = U1A e
C = U2B. Logo, C = U2B = U2(U1A) = (U2U1)A = U3A, em que U3 = U2U1. Portanto,
A ∼ C, uma vez que o produto de duas matrizes unimodulares é uma matriz unimodular.

Teorema 3. Se A ∼ B, então qualquer linha de A pode ser escrita como uma combinação
linear inteira das linhas de B.

Demonstração. Sejam A e B matrizes de ordem m × n, com entradas inteiras, tais que
A ∼ B. Pelo item (ii) do Teorema 2, temos que B ∼ A, isto é, existe uma matriz unimodular
U tal que A = UB. Sejam i ∈ {1, . . . ,m} e ei a matriz de ordem 1×m, cuja i-ésima entrada
é igual a 1 e as demais entradas são iguais a 0. Como

eiA = ei(UB) = (eiU)B

e eiU é uma matriz linha com entradas inteiras, segue que a i-ésima linha de A pode ser escrita
como uma combinação linear inteira das linhas de B.

O Teorema 3 garante que se duas matrizes são linha equivalentes sobre Z, então cada linha
de uma delas pode ser escrita como uma combinação linear inteira das linhas da outra. A
demonstração do mesmo fornece implicitamente um método de como obter essa combinação
linear, o qual será ilustrado no Exemplo 4.

Exemplo 4. Considere novamente as matrizes A, B e U do Exemplo 2. A relação entre elas
é B = UA. Para expressar, por exemplo, a terceira linha de B como uma combinação linear
inteira das linhas de A, basta efetuar os seguintes cálculos:

[
−3 −7 −13

]
=

[
0 0 1

]
·

 1 2 3

0 1 4

−3 −7 −13



=
[

0 0 1
]
·


 0 1 0

1 0 0

0 −2 −1

 ·
 0 1 4

1 2 3

1 3 7


 =

=

[
0 0 1

]
·

 0 1 0

1 0 0

0 −2 −1


 ·

 0 1 4

1 2 3

1 3 7

 =
[

0 −2 −1
]
·

 0 1 4

1 2 3

1 3 7


Isto mostra que (−3,−7,−13) = 0 · (0, 1, 4)− 2 · (1, 2, 3)− 1 · (1, 3, 7).

Braz. Elect. J. Math., Ituiutaba, v.6, Jan/Dez 2025, p. 6 / 21.



A forma normal de Hermite 7

3 A Forma Normal de Hermite

Uma matriz na Forma Normal de Hermite é uma matriz num formato similar à Forma Esca-
lonada Reduzida (Definição 4). Um dos destaques desta seção é o resultado que garante que
qualquer matriz com entradas inteiras é linha equivalente a uma, e somente uma, matriz na
Forma Normal de Hermite (Teorema 4). Este resultado nos permite definir o que chamaremos
de Forma Normal de Hermite de uma matriz (Definição 5). As principais referências utilizadas
na elaboração desta seção foram [8], [10] e [11].

Definição 4. Seja H = [hij] uma matriz de ordem m × n com entradas inteiras. Dizemos que
H está na Forma Normal de Hermite se existir um inteiro r, 0 ≤ r ≤ m, tal que:

(i) As últimas m− r linhas de H são nulas;

(ii) Existem ı́ndices j1, j2, . . . , jr, com 1 ≤ j1 < j2 < · · · < jr ≤ n, de modo que as entradas
à esquerda de hiji são iguais a zero e hiji ≥ 1;

(iii) Todas as entradas acima de hiji são não negativas e menores do que hiji .

Exemplo 5. As seguintes matrizes estão na Forma Normal de Hermite.
5 2 1 8

0 3 0 5

0 0 2 1

0 0 0 9

0 0 0 0




2 1 2 7

0 0 6 1

0 0 0 10

0 0 0 0


 0 0 2 3 0 11 −2

0 0 0 5 0 6 7

0 0 0 0 0 15 0


 0 0 0

0 0 0

0 0 0



Um subconjunto não vazio de Rn é linearmente independente se, e somente se, nenhum
de seus elementos pode ser escrito como uma combinação linear, com coeficientes reais, dos
demais elementos. Para mais detalhes sobre conceitos e resultados de Álgebra Linear, suge-
rimos a referência [7]. As linhas não nulas de uma matriz na forma normal de Hermite são
linearmente independentes. Se H é uma matriz que satisfaz as condições da Definição 4, então
posto(H) = r. Por exemplo, as matrizes listadas no Exemplo 5 têm posto igual a 4, 3, 3 e 0,
respectivamente.

Os dois lemas a seguir estabelecem relações entre matrizes que são linha equivalentes e
estão na Forma Normal de Hermite. O objetivo destes resultados é simplificar a demonstração
do Teorema 4.

Lema 1. SejamH = [hij] eH ′ = [h′ij] matrizes na Forma Normal de Hermite tais queH ∼ H ′.
Temos que hiji é a primeira entrada não nula da i-ésima linha de H se, e somente se, h′iji é a
primeira entrada não nula da i-ésima linha de H ′.

Demonstração. Denote as linhas de H por h1,h2, . . . ,hm e as de H ′ por h′1,h
′
2, . . . ,h

′
m.

Para cada i, a linha hi é não nula se, e somente se, a linha h′i é não nula, uma vez que H e H ′
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estão na forma normal de Hermite e posto(H) = posto(H ′). A última igualdade é garantida
pelo Teorema 3, pois H ∼ H ′. Seja k o número de linhas não nulas de cada uma das matrizes.
Para cada i ∈ {1, . . . , k}, sejam hiji e h′i`i as primeiras entradas não nulas de hi e h′i, respecti-
vamente. O objetivo é mostrar que ji = li,∀i ∈ {1, . . . , k}. Pelo Teorema 3, a linha h1 pode
ser escrita como uma combinação linear inteira das linhas de H ′, uma vez que H ∼ H ′. Como
H e H ′ estão na forma normal de Hermite, segue que j1 ≥ `1. De forma análoga, observando
que a linha h′1 pode ser escrita como uma combinação linear inteira das linhas de H , obtemos
j1 ≤ `1. Logo, j1 = `1. Agora, seja 1 < i < k e assuma que j1 = `1, j2 = `2, . . . , ji−1 = `i−1.
Suponha, por absurdo, que ji 6= `i. Sem perda de generalidade, podemos assumir que ji < `i.
Escreva

H ′ =

[
A(i−1)×`i−1

B(i−1)×(n−`i−1)

0(m−i+1)×`i−1
C(m−i+1)×(n−`i−1)

]
,

onde 0(m−i+1)×ji é a matriz nula. Por construção, as linhas de A são linearmente independentes.
Como ji − 1 ≥ `i−1, pois ji > ji−1 = `i−1, e as primeiras ji − 1 entradas da matriz hi são
iguais a zero, o Teorema 3 fornece que a linha hi pode ser escrita como uma combinação linear
inteira das linhas da matriz

Ĉ =
[

0(m−i+1)×`i−1
C(m−i+1)×(n−`i−1)

]
.

Por outro lado, a matriz Ĉ está forma normal de Hermite e a primeira entrada não nula de sua
primeira linha é ĉ1`i , uma vez que suas linhas são h′i, . . . ,h

′
m. Logo, Ĉ pode ser particionada

como
Ĉ =

[
0(m−i+1)×(`i−1) D(m−i+1)×(n−`i+1)

]
e, portanto, as primeiras ji entradas de hi são nulas, uma vez que ji < `i. Isto contradiz a
hipótese hiji 6= 0.

Lema 2. Sejam H e H ′ matrizes na Forma Normal de Hermite. Se H ∼ H ′, então H = H ′.

Demonstração. Sejam H = [hij] e H ′ = [h′ij] matrizes de ordem m × n, ambas na Forma
Normal de Hermite, tais que H ∼ H ′. Suponha, por absurdo, que H 6= H ′. Escolha hi0j0 6=
h′i0j0 de modo que j0 seja o menor possı́vel. Podemos assumir sem perda de generalidade que
hi0j0 > h′i0j0 . Denote as linhas de H por h1,h2, . . . ,hm e as de H ′ por h′1,h

′
2, . . . ,h

′
m. As

primeiras j0 − 1 entradas da matriz linha hi0 − h′i0 são iguais a zero enquanto que a j0-ésima
entrada (isto é, hi0j0 − h′i0j0) é diferente de zero. Como H ∼ H ′, o Teorema 3 garante que
h′i0 pode ser escrito como uma combinação linear inteira das linhas de H . Consequentemente,
hi0 − h′i0 também pode ser escrito como uma combinação linear inteira das linhas de H , uma
vez que hi0 é uma dessas linhas. Como H está na Forma Normal de Hermite, existe um inteiro
k (1 ≤ k ≤ j0) tal que hi0−h′i0 pode ser escrito como uma combinação linear inteira das linhas
hk,hk+1, . . . ,hm (essas são exatamente as linhas que possuem as primeiras j0 − 1 entradas
iguais a zero). A j0-ésima entrada de cada uma das linhas hk+1, . . . ,hm também é igual a
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zero. Assim, hi0j0 − h′i0j0 = αhkj0 para algum inteiro α. Como hi0j0 6= h′i0j0 , segue que
hkj0 6= 0. Logo, hkj0 é a primeira entrada não nula de hk, o que implica que hkj0 > 0, as
demais entradas da j0-ésima coluna de H são não negativas e hkj0 > hij0 se i 6= k, uma vez
que H está na Forma Normal de Hermite. Dessa forma, tem-se α ≥ 1, uma vez que hkj0 > 0,
0 < hi0j0 − h′i0j0 = αhkj0 e α ∈ Z. Consequentemente,

hi0j0 − h′i0j0 = αhkj0 ≥ hkj0 ≥ hi0j0 . (1)

Isto mostra que h′i0j0 ≤ 0. Pelo Lema 1, h′kj0 é a primeira entrada não nula da linha h′k, portanto
h′ij0 ≥ 0 para todo i pela forma normal de Hermite de H ′. Assim h′i0j0 ≥ 0 e consequentemente
h′i0j0 = 0. Pela desigualdade (1) temos que hi0j0 = hkj0 , ou seja, i0 = k. Pelo Lema 1,
h′i0j0 6= 0. Absurdo.

O próximo resultado será de suma importância na abordagem das aplicações que serão apre-
sentadas neste artigo, uma vez que está diretamente relacionado ao resultado que faz a conexão
entre matrizes na forma normal de Hermite e reticulados (Teorema 6).

Teorema 4. Se A é uma matriz de ordem m× n com entradas inteiras, então existe uma única
matriz H na Forma Normal de Hermite que é linha equivalente a A.

Demonstração. (Existência) Seja A = [aij] uma matriz com entradas inteiras. A
demonstração da existência da matriz H será feita por indução sobre o número de colunas
de A. Se A é a matriz nula de ordem m × 1 não há o que demonstrar. Suponha, então, que
A é uma matriz m × 1 não nula, com exatamente k entradas diferentes de zero. Sem perda
de generalidade, pelas operações (i) e (ii), podemos assumir que 0 < a11 ≤ a21 ≤ · · · ≤ ak1
e ai1 = 0, para i ∈ {k + 1, . . . ,m}. Substituindo cada linha Li por Li − qi1L1 (sendo qi1
o quociente da divisão de ai1 por a11), com exceção da primeira e das últimas m − k linhas,
obtemos a matriz coluna A1 cujas primeiras entradas são a11, r21, . . . , rk1, onde ri1 é o resto da
divisão de ai1 por a11, e as demais são iguais a zero. Se ri1 = 0, para todo i ∈ {2, . . . , k},
temos o resultado desejado. Caso contrário, aplicamos o processo descrito acima à matriz A1, e
repetimos se necessário, até obter o resultado desejado. Este processo finaliza após um número
finito de etapas, pois as matrizes obtidas no decorrer do processo possuem entradas inteiras po-
sitivas, a primeira entrada é sempre maior do que as demais e menor do que a primeira entrada
da matriz da etapa anterior. Agora, suponha que A é uma matriz de ordem m×n, com n ≥ 2, e
que o resultado é válido para toda matriz cujo número de colunas é menor do que n. Aplicando
convenientemente as operações elementares, de forma análoga ao caso n = 1, obtemos uma
matriz da forma 

â11 â12 · · · â1n

0
... B

0

 ,
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na qual B é uma matriz com entradas inteiras de ordem (m− 1)× (n− 1). Assim, a hipótese
de indução garante que existe uma matriz Ĥ na Forma Normal de Hermite tal que B e Ĥ são
linha equivalentes sobre Z. Logo, a matriz A é linha equivalente sobre Z à matriz

â11 â12 · · · â1n

0
... Ĥ

0

 .

Para obter a condição (iii) da Definição 4, aplicamos no máximo n − 1 operações elementares
unimodulares do tipo (iii) à primeira linha, de modo a obter H , que está na Forma Normal de
Hermite.

(Unicidade) Agora, suponha que existem matrizesH eH ′ de ordemm×n, ambas na Forma
Normal de Hermite e linha equivalentes a A. Como H ∼ A e H ′ ∼ A, o Teorema 2 garante
que H ∼ H ′. Pelo Lema 2, temos que H = H ′, uma vez que ambas estão na Forma Normal
de Hermite. Portanto, existe uma única matriz H na Forma Normal de Hermite que é linha
equivalente a A.

Definição 5. A matriz H do Teorema 4 é chamada de Forma Normal de Hermite de A e é
denotada por HNF(A).

No restante desta seção é apresentado um algoritmo para o cálculo da forma normal de
Hermite de uma matriz. Seja A uma matriz de ordem m × n com entradas inteiras. Se A é a
matriz nula, então HNF(A) = A, ou seja, não há o que calcular. Suponha que A é não nula e
sua j1-ésima coluna seja a primeira não nula. Para obter a forma normal de Hermite, iniciamos
aplicando o algoritmo descrito a seguir e o repetimos até obtermos uma matriz cuja j1-ésima
coluna tenha exatamente uma entrada não nula.

1. Escolher uma entrada da j1-ésima coluna que tenha o menor valor absoluto diferente de
zero. Digamos que a entrada escolhida seja ai1j1 .

2. Para cada i, 1 ≤ i ≤ m e i 6= i1, determinar os inteiros qi e ri tais que aij1 = qiai1j1 + ri
e 0 ≤ ri < |ai1j1|. A existência e unicidade de tais inteiros é garantida pelo Teorema da
Divisão [12].

3. Substituir cada linha Li, com 1 ≤ i ≤ m e i 6= i1, por Li − qiLi1 .

Em seguida, se necessário, aplicar as operações elementares (i) e (ii) para que a primeira
entrada da j1-ésima coluna da matriz obtida seja positiva.
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Exemplo 6. Seja

A =


7 6 1 2

3 1 2 4

2 1 1 6

5 4 1 6

 .
A primeira coluna de A é não nula e a entrada a31 é a que possui o menor valor absoluto
diferente de zero. Substituindo as linhas L1, L2 e L4, respectivamente, por L1 − 3L3, L2 − L3

e L4 − 2L3 (pois 7 = 3 · 2 + 1, 3 = 1 · 2 + 1 e 5 = 2 · 2 + 1), obtemos
1 3 −2 −16

1 0 1 −2

2 1 1 6

1 2 −1 −6

 .
As entradas da primeira coluna da matriz obtida no passo anterior que possuem o menor valor
absoluto diferente de zero são a11, a21 e a41. Para dar seguimento ao algoritmo, escolhemos
a11 e, consequentemente, substituı́mos as linhas L2, L3 e L4 por L2 − L1, L3 − 2L1 e L4 − L1,
respectivamente (pois 1 = 1 · 1 + 0, 2 = 2 · 1 + 0 e 1 = 1 · 1 + 0). Dessa forma, obtemos a
matriz 

1 3 −2 −16

0 −3 3 14

0 −5 5 38

0 −1 1 10

 .
Com isso, a primeira etapa é finalizada, pois há apenas uma entrada diferente de zero na
primeira coluna e essa encontra-se na primeira linha.

Finalizada a primeira etapa, passamos para a segunda etapa. Suponha que a j2-ésima coluna
da matriz obtida na primeira etapa seja a primeira coluna cujas entradas, a partir da segunda,
sejam não todas nulas. A segunda etapa consiste em repetir o algoritmo descrito abaixo até
obtermos uma matriz cuja j2-ésima coluna tenha exatamente uma entrada não nula a partir da
segunda.

1. Escolher uma entrada da j2-ésima coluna, a partir da segunda, que tenha o menor valor
absoluto diferente de zero. Digamos que a entrada escolhida seja ai2j2 .

2. Para cada i, 2 ≤ i ≤ m e i 6= i2, determinar os inteiros qi e ri de modo que aij2 =

qiai2j2 + ri e 0 ≤ ri < |ai2j2|. A existência e unicidade de tais inteiros é garantida pelo
Teorema da Divisão [12].

3. Substituir cada linha Li, com 2 ≤ i ≤ m e i 6= i2, por Li − qiLi2 .
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Em seguida, se necessário, aplicar as operações elementares (i) e (ii) para que a segunda entrada
da j2-ésima coluna da matriz obtida seja positiva.

Exemplo 7. Considere a matriz obtida no Exemplo 6, isto é,
1 3 −2 −16

0 −3 3 14

0 −5 5 38

0 −1 1 10

 .
A segunda coluna dessa matriz é a primeira cujas entradas, a partir da segunda, não são todas
nulas e a entrada a42 é a que possui o menor valor absoluto diferente de zero. Substituindo
as linhas L2 e L3 por L2 − 3L4 e L3 − 5L4, respectivamente (pois −3 = 3 · (−1) + 0 e
−5 = 5 · (−1) + 0), obtemos 

1 3 −2 −16

0 0 0 −16

0 0 0 −12

0 −1 1 10

 .
Aplicando a operação elementar L2 ↔ L4 e, em seguida, L2 → −L2, obtemos

1 3 −2 −16

0 1 −1 −10

0 0 0 −12

0 0 0 −16

 .
Isto conclui a segunda etapa.

Finalizada a segunda etapa, passamos para a terceira etapa. Suponha que a j3-ésima coluna
da matriz obtida na segunda etapa seja a primeira coluna cujas entradas, a partir da terceira,
sejam não todas nulas. A terceira etapa consiste em repetir o algoritmo descrito abaixo até
obtermos uma matriz cuja j3-ésima coluna tenha exatamente uma entrada não nula a partir da
terceira.

1. Escolher uma entrada da j3-ésima coluna, a partir da terceira, que tenha o menor valor
absoluto diferente de zero. Digamos que a entrada escolhida seja ai3j3.

2. Para cada i, 3 ≤ i ≤ m e i 6= i3, determinar os inteiros qi e ri de modo que aij3 =

qiai3j3 + ri e 0 ≤ ri < |ai3j3|. A existência e unicidade de tais inteiros é garantida pelo
Teorema da Divisão [12].

3. Substituir cada linha Li, com 3 ≤ i ≤ m e i 6= i3, por Li − qiLi3 .
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Em seguida, se necessário, aplicar as operações elementares (i) e (ii) para que a terceira entrada
da j3-ésima coluna da matriz obtida seja positiva.

Exemplo 8. Considere a matriz obtida no Exemplo 7, isto é,
1 3 −2 −16

0 1 −1 −10

0 0 0 −12

0 0 0 −16

 .
A quarta coluna dessa matriz é a primeira cujas entradas, a partir da terceira, não são todas
nulas e a entrada a34 é a que possui o menor valor absoluto diferente de zero. Substituindo a
linha L4 por L4 − 2L3 (pois −16 = 2 · (−12) + 8), obtemos

1 3 −2 −16

0 1 −1 −10

0 0 0 −12

0 0 0 8

 .
A entrada da quarta coluna da matriz obtida no passo anterior, a partir da terceira, que possui
o menor valor absoluto diferente de zero é a44. Substituindo a linha L3 por L3 + 2L4 (pois
−12 = (−2) · 8 + 4), obtemos 

1 3 −2 −16

0 1 −1 −10

0 0 0 4

0 0 0 8

 .
A entrada da quarta coluna da matriz obtida no passo anterior, a partir da terceira, que possui
o menor valor absoluto diferente de zero é a34. Substituindo a linha L4 por L4 − 2L3 (pois
8 = 2 · 4 + 0), obtemos 

1 3 −2 −16

0 1 −1 −10

0 0 0 4

0 0 0 0

 .
Isto conclui a terceira etapa.

Continuando este processo, após no máximo m etapas, obtemos um inteiro r, 1 ≤ r ≤ m,
e uma matriz cujas últimas m − r linhas são nulas, as entradas à esquerda de aiji são iguais a
zero e aiji ≥ 1 para todo i ∈ {1, 2, . . . , r}, ou seja, uma matriz que satisfaz as condições (i) e
(ii) da Definição 4.

Para obter a forma normal de Hermite de A, a partir da matriz obtida no processo descrito
acima, basta aplicar o seguinte algoritmo (iniciar com k = 2): Para cada i < k, se aijk ≥ akjk
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ou aijk < 0, substituir a linha Li por Li → Li− qiLk, em que qi é o quociente da divisão de aijk
por akjk . Em seguida, substituir k por k + 1. Retornar ao inı́cio se k + 1 ≤ r e finalizar caso
contrário. Este processo será ilustrado no próximo exemplo.

Exemplo 9. Considere a matriz obtida no Exemplo 8, isto é,
1 3 −2 −16

0 1 −1 −10

0 0 0 4

0 0 0 0

 .
Como a12 é maior do que a22 e esta última é a entrada ai2j2 , substituı́mos a linha L1 por
L1 − 3L2, pois 3 = 3 · 1 + 0. Dessa forma, obtemos

1 0 1 14

0 1 −1 −10

0 0 0 4

0 0 0 0

 .
Como as novas entradas a14 e a24 possuem valor absoluto maior que a34 e esta última é a
entrada ai3j3 , substituı́mos as linhas L1 e L2 por L1 − 3L3 e L2 + 3L3, respectivamente (pois
14 = 3 · 4 + 2 e −10 = (−3) · 4 + 2). Após efetuar as substituições indicadas, obtemos a forma
normal de Hermite da matriz A definida no Exemplo 6, a saber,

HNF(A) =


1 0 1 2

0 1 −1 2

0 0 0 4

0 0 0 0

 .

4 Aplicações

Nesta seção, a forma normal de Hermite será utilizada na abordagem de três problemas básicos
do contexto de reticulados, são eles: o problema de determinar uma base de um reticulado e os
problemas da igualdade e união de reticulados. As principais referências desta seção são [5] e
[1].

Um reticulado é qualquer subgrupo aditivo e discreto de Rn. Equivalentemente, um sub-
conjunto Λ de Rn, Λ 6= {0}, é um reticulado se, e somente se, existem vetores b1, . . . , bm ∈ Rn

linearmente independentes de modo que

Λ = {α1b1 + · · ·+ αmbm; α1, . . . , αm ∈ Z}.

Na descrição acima, o conjunto {b1, . . . , bm} é denominado uma base de Λ. No exemplo a
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seguir é apresentado um reticulado e algumas bases do mesmo.

Exemplo 10. Seja Λ ⊂ R2 o reticulado gerado pela base {u1,v1}, em que u1 = (2, 3) e
v1 = (2, 4). Esse reticulado tem infinitas bases. Na Figura 1 estão ilustradas três bases de Λ,
a saber, {u1,v1}, {u2,v2} e {u3,v3}, em que u2 = (−2, 1), v2 = (−4, 1), u3 = (−2, 2) e
v3 = (−2, 3). Para verificar que essas são de fato bases de Λ, basta aplicar o Teorema 7 que
veremos mais adiante.

Figura 1: Bases do reticulado Λ.

Fonte: Os autores.

É importante ressaltar que nem todo conjunto constituı́do por dois vetores do reticulado Λ,
linearmente independentes, formam uma base do mesmo. Por exemplo, os vetores u2 = (−2, 1)

e v3 = (−2, 3) são linearmente independentes e pertencem a Λ, mas não formam uma base de
Λ. De fato, o vetor u3 = (−2, 2) pertence a Λ e não pode ser escrito como uma combinação
linear inteira deles, uma vez que u3 = 1

2
u2 + 1

2
v3.

A quantidade de elementos de uma base de um reticulado é invariante, isto é, duas bases de
um mesmo reticulado possuem o mesmo número de elementos. Isso nos permite definir o posto
de um reticulado como o número de vetores de uma base qualquer do mesmo. Dizemos que um
reticulado Λ ⊂ Rn tem posto completo se possui posto igual a n. O reticulado apresentado no
Exemplo 10 tem posto completo.

Dados um reticulado Λ ⊂ Rn e uma base {b1, . . . , bm} de Λ tal que bi = (bi1, . . . , bin), para
i ∈ {1, . . . ,m}, a matriz

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

bm1 bm2 . . . bmn


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é denominada uma matriz geradora de Λ. Neste caso, escrevemos Λ = Λ(B). Este reticulado
pode ser representado matricialmente por

Λ(B) = {uB; u ∈M1×m(Z)}.

Em outras palavras, um elemento b pertence ao reticulado Λ(B) se, e somente se, b pode
ser escrito como uma combinação linear inteira das linhas da matriz B. Na descrição acima, o
sı́mboloM1×m(Z) denota o conjunto das matrizes com entradas inteiras de ordem 1×m. Temos
que B1 e B2 são matrizes geradoras de Λ se, e somente se, existe uma matriz unimodular U tal
que B2 = UB1 [5, 9].

Teorema 5. Sejam B1 e B2 matrizes de ordem m × n (m ≤ n) com entradas inteiras e posto
completo. Temos que

Λ(B1) = Λ(B2)⇐⇒ B1 ∼ B2.

Demonstração. (⇒) Sejam B1 e B2 matrizes de ordem m×n, m ≤ n, com entradas inteiras
e posto completo. Suponha que Λ(B1) = Λ(B2). Assim, existe uma matriz unimodular U tal
que B2 = UB1 e, logo, B1 ∼ B2. (⇐) Sejam B1 e B2 matrizes com entradas inteiras tais que
B1 ∼ B2. Assim, existe uma matriz unimodular U tal que B2 = UB1. Isto implica que B1 e
B2 geram o mesmo reticulado, isto é, Λ(B1) = Λ(B2).

O próximo resultado estabelece uma conexão entre a forma normal de Hermite e reticulados.
Este será de grande importância na abordagem das aplicações que serão apresentadas neste
artigo.

Teorema 6. Todo reticulado contido em Zn possui uma, e somente uma, matriz geradora na
forma normal de Hermite.

Demonstração. Sejam Λ um reticulado e B uma matriz geradora de Λ. O Teorema 4 garante
que existe uma matriz H na forma normal de Hermite tal que H ∼ B, o que implica que H é
uma matriz geradora de Λ. Logo, todo reticulado possui uma matriz geradora na Forma Normal
de Hermite. A unicidade é garantida pelo Lema 2.

No que segue serão abordados três problemas básicos do contexto de reticulados utilizando
a forma normal de Hermite. Inicialmente será apresentado o problema da base, que consiste
em determinar uma base de um reticulado a partir de um conjunto de geradores. Com efeito,
dados vetores b1, . . . , bm ∈ Zn, não necessariamente linearmente independentes, considere
Λ = {α1b1+· · ·+αmbm; α1, . . . , αm ∈ Z}. Pode-se verificar facilmente que Λ é um reticulado.
Para determinar uma base de Λ, basta calcular HNF(A), em que A é a matriz de ordem m× n
cujas linhas são b1, . . . , bm. Como HNF(A) ∼ A, cada um dos elementos de Λ pode ser escrito
como uma combinação linear inteira das linhas de HNF(A). Portanto, as linhas não nulas de
HNF(A) formam uma base de Λ.

Exemplo 11. Sejam b1 = (7, 6, 1, 2), b2 = (3, 1, 2, 4), b3 = (2, 1, 1, 6), b4 = (5, 4, 1, 6) e
Λ = {α1b1 + α2b2 + α3b3 + α4b4; α1, α2, α3, α4 ∈ Z}. Considere a matriz A cujas linhas são
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b1, b2, b3 e b4, respectivamente. Pelo Exemplo 9, temos que

HNF(A) =


1 0 1 2

0 1 −1 2

0 0 0 4

0 0 0 0

 .
Logo, {(1, 0, 1, 2), (0, 1,−1, 2), (0, 0, 0, 4)} é uma base de Λ.

Agora, será abordado o problema da igualdade, que consiste em determinar se duas matri-
zes com entradas inteiras são matrizes geradoras do mesmo reticulado. O próximo resultado
soluciona este problema, uma vez que ele garante que duas matrizes com entradas inteiras são
matrizes geradoras de um mesmo reticulado se, e somente se, elas possuem a mesma forma
normal de Hermite.

Teorema 7. Sejam B1 e B2 matrizes de ordem m × n, m ≤ n, com entradas inteiras e posto
completo. Temos que

Λ(B1) = Λ(B2)⇐⇒ HNF(B1) = HNF(B2).

Demonstração. (⇒) Como Λ(B1) = Λ(B2), o Teorema 5 garante que B1 ∼ B2. Por
outro lado, o Teorema 4 garante que B1 ∼ HNF(B1) e B2 ∼ HNF(B2). Logo, pelo Teorema 2,
HNF(B1) ∼ HNF(B2). Aplicando o Lema 2, obtemos HNF(B1) = HNF(B2). (⇐) Suponha
que HNF(B1) = HNF(B2). Logo, Λ(HNF(B1)) = Λ(HNF(B2)). Como B1 ∼ HNF(B1) e
B2 ∼ HNF(B2), segue que Λ(B1) = Λ(HNF(B1)) e Λ(B2) = Λ(HNF(B2)), respectivamente.
Portanto, Λ(B1) = Λ(B2).

Exemplo 12. Sejam

B1 =

[
2 1 1

4 0 2

]
, B2 =

[
8 2 4

−6 −1 −3

]
, B3 =

[
1 2

2 1

]
e B4 =

[
1 1

−1 2

]
.

O Teorema 7 garante que Λ(B1) = Λ(B2) e Λ(B3) 6= Λ(B4), uma vez que

HNF(B1) = HNF(B2) =

[
2 1 1

0 2 0

]
e

HNF(B3) =

[
1 2

0 3

]
6=

[
1 1

0 3

]
= HNF(B4).

A união de dois reticulados nem sempre é um reticulado. De fato, basta observar que Λ1 =

{(2k, s); k, s ∈ Z} e Λ2 = {(3k, s); k, s ∈ Z} são reticulados em R2, mas Λ1 ∪ Λ2 não é
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um reticulado (Figura 2). É um conjunto discreto, mas não é um subgrupo aditivo de R2, pois
(2, 0), (3, 0) ∈ Λ1 ∪ Λ2 e (1, 0) = (3, 0) − (2, 0) /∈ Λ1 ∪ Λ2. Dados dois reticulados, ambos
contidos em Zn, o problema da união consiste em determinar uma base para o menor reticulado
que os contém. O próximo resultado juntamente com a solução do problema da base fornecem
uma solução para este problema.

Figura 2: Λ1 ∪ Λ2 não é um reticulado.

Fonte: Os autores.

Teorema 8. Sejam B e B̂ matrizes com entradas inteiras de ordem k × n e m × n (k ≤ n e
m ≤ n), respectivamente. Se B e B̂ têm posto completo (isto é, possuem linhas linearmente
independentes) e Λ é o menor reticulado que contém Λ(B) e Λ(B̂), então Λ é constituı́do por
todas as combinações lineares inteiras das linhas da matriz

A =

[
B

B̂

]
.

Demonstração. Seja W o subespaço vetorial de Rn gerado pelas linhas de A. Como
Λ̃ := Λ ∩W é um reticulado que contém Λ(B) e Λ(B̂) e está contido em Λ, segue que Λ̃ = Λ

e Λ ⊂ W , uma vez que Λ é o menor reticulado que contém Λ(B) e Λ(B̂). Assim, para
cada elemento v de Λ, existem números reais x1, . . . , xk e y1, . . . , ym tais que v = x1b1 +

· · · + xkbk + y1b̂1 + · · · + ymb̂m, em que {b1, . . . , bk} e {b̂1, . . . , b̂m} são as linhas de B e B̂,
respectivamente. Por outro lado, x1b1 + · · · + xkbk ∈ Λ(B) e y1b̂1 + · · · + ymb̂m ∈ Λ(B̂).
Assim, existem inteiros α1, . . . , αk e β1, . . . , βm tais que x1b1 + · · ·+xkbk = α1b1 + · · ·+αkbk
e y1b̂1 + · · · + ymb̂m = β1b̂1 + · · · + βmb̂m, isto é, (x1 − α1)b1 + · · · + (xk − αk)bk = 0 e
(y1−β1)b̂1 + · · ·+ (ym−βm)b̂m = 0. Logo, x1, . . . , xk e y1, . . . , ym são inteiros, uma vez que
por hipótese {b1, . . . , bk} e {b̂1, . . . , b̂m} são conjuntos linearmente independentes. Isto mostra
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que todo elemento de Λ pode ser escrito como uma combinação linear inteira das linhas da
matriz A. Reciprocamente, se v é uma combinação linear inteira das linhas de A, então existem
u ∈ Λ(B) e û ∈ Λ(B̂) tais que v = u + û. Como Λ(B) e Λ(B̂) são subconjuntos de Λ, segue
que v, pois Λ é um subgrupo de Rn.

Exemplo 13. Sejam

B =

[
7 6 1 2

3 1 2 4

]
e B̂ =

[
2 1 1 6

5 4 1 6

]
.

Considere a matriz

A =

[
B

B̂

]
=


7 6 1 2

3 1 2 4

2 1 1 6

5 4 1 6

 .
Pelos Exemplos 6, 7, 8 e 9, a forma normal de Hermite de A é

1 0 1 2

0 1 −1 2

0 0 0 4

0 0 0 0

 .
Logo, {(1, 0, 1, 2), (0, 1,−1, 2), (0, 0, 0, 4)} é uma base do menor reticulado que contém Λ(B)

e Λ(B̂).

Além das três aplicações apresentadas, existem várias outras tanto básicas como não básicas,
algumas delas estão listadas na referência [1].
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