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Abstract. In this paper, we define a sequence of polynomials associated with the repunit nu-
merical sequence. This involves extending the concept of the repunit sequence, a sequence
type Horadam, represented by the sequence of repunit numbers, where rn represents the
n-th repunit, and the recurrence relation: rn+1 = 11rn − 10rn−1, with r0 = 0, r1 = 1

for n ≥ 1. In this paper, we investigate this new polynomial sequence in detail and present
some results and applications derived from this investigation. For instance, we study the
characteristic equation and derive the corresponding generating function. Additionally, we
analyze the recurrence relation associated with the sum of n repunit polynomials.

Keywords. Polynomial repunit, repunit number, sequence.

Resumo. Neste trabalho, definimos uma sequência de polinômios associada à sequência
numérica repunidade. Isto envolve estender o conceito de sequência repunidade, uma se-
quência do tipo Horadam, representada pela sequência de números repunidades, em que rn

representa o n-ésima repunidade, e a relação de recorrência: rn+1 = 11rn − 10rn−1, com
r0 = 0, r1 = 1 para n ≥ 1. Neste artigo, investigamos esta nova sequência polinomial
em detalhe e apresentamos alguns resultados e aplicações derivados desta investigação. Por
exemplo, estudamos a equação caraterística e derivamos a função geradora correspondente.
Adicionalmente, analisamos a relação de recorrência associada à soma de n polinômios
repunidades.

Palavras-chave. Número repunidade, polinômio repunidade, sequência.

Resumem. En este trabajo definimos una sucesión de polinomios asociada a la sucesión
de números de repunidades. Se trata de extender el concepto de sucesión de repunidades,
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una sucesión de tipo Horadam, representada por la sucesión de números de repunidades,
donde rn representa el n-ésimo número de repunidades, y la relación de recurrencia rn+1 =

11rn − 10rn−1, con r0 = 0, r1 = 1 para n ≥ 1. En este artículo, investigamos en detalle
esta nueva secuencia polinómica y presentamos algunos resultados y aplicaciones derivados
de esta investigación. Por ejemplo, estudiamos la ecuación característica y derivamos la
función generatriz correspondiente. Además, analizamos la relación de recurrencia asociada
a la suma de n polinomios repunit.

Palabras-clave. Número de repunidad, repunidad polinòmica, secuencia.
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1 Introduction

The repunit numbers are defined as rn, where n is a non-negative integer or natural num-
ber (n ∈ N), a repunit is characterized by its representation in a positional number system
with base b > 1, consisting solely of the repetition of the digit 1. For instance, in the
decimal system (base b = 10), examples of repunit numbers include 1, 11, 111, 1111, and
11111. These sequences, cataloged as A002275 in the OEIS [16], have captured the fas-
cination of mathematicians for generations [1, 3, 4, 8, 18], and beyond. In this paper, we
consider numbers rn of the form 111 . . . 1 (n times 1′s) when expressed in base 10. Such
a number is of the form rn = 10n−1

9
.

We start with the elementary observation that the sequence rn satisfies the linear re-
currence

rn+1 = 10rn + 1, with r1 = 1 and n ≥ 1 . (1)

Admitting r0 = 0 we have in the Equation (1) that

rn = 10rn−1 + 1, with r0 = 0 and n ≥ 1 . (2)

Making a difference (1)- (2) we get

rn+1 = 11rn − 10rn−1 with r0 = 0 , r1 = 1, and n ≥ 1 , (3)

where rn denotes the n-th repunit, for convenience we use r0 = 0. In [11, 12] the repunit
sequence {rn}n≥0 is recursively defined by the homogeneous relation (3) .

The Horadam-type sequence is a specific class of sequences, defined by the follow-
ing characteristics: hn+2 = phn+1 + qhn, with initial conditions h0 = a, h1 = b and
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p, q real numbers. This sequence like was introduced, in 1965, by Horadam [6], and it
generalizes many sequences with characteristic equation of recurrence relation of form
x2 − px − q = 0. Thus repunit sequence is a particular case of the Horadam sequence.
Recursive relations define several families of integers that are studied in the literature.
These sequences of numbers are at the origin of many interesting identities.

Several researchers associate specific numerical sequences with a sequence of polyno-
mials, another way of studying and obtaining results from these sequences and applications,
see [5, 13, 14, 15] and associated references. Motivated by these works, In Section 2, we
present some preliminary results about the repunit sequence, such as the Binet formula,
some classical identities, and generating function for the repunit numbers used in the next
sections. In Section 3, we define the repunit polynomial sequence associated with the
repunit sequence. We study the characteristic equation, the main result being its generat-
ing function. Finally, in Section 4, we show another recurrence associated with the sum
of n repunit polynomials sequence, in addition to observing the non-convergence of this
sequence. Emphasis that repunit polynomial sequence is also a polynomial sequence of
the Horadam sequence type. More general work on the polynomials associated with the
Horadam sequence was carried out in [7] and [17].

2 Background and preliminaries results

We remember that a recurrence is an expression that defines an element of a sequence
based on previously given or known terms. In this section, we present an expression that
provides the terms of the repunit sequence {rn}n≥0 in function exclusively of n and no
longer recursively through the previous elements, and a generating function of the repunit
sequence. To do this, we will determine the sequences that are solutions of the recurrence
an = 11an−1−10an−2, and among these solutions which satisfy the case in which a0 = 0

and a1 = 1.
In particular, Equation (3) is a linear difference equation, or linear recurrence, of order

2. According [10], if the equation r2 + pr + q = 0 has distinct roots r1 and r2, and then
the sequences an = c1(r1)

n + c2(r2)
n, where n ∈ N, and c1, c2 ∈ R, are solutions of

xn+2 + pxn+1 + qxn = 0, for n ∈ N, n ≥ 1 .

Note that the difference equation associated with the sequence of repunit rn is

rn+1 = 11rn − 10rn−1,

which has as its characteristic equation t2 − 11t + 10 = 0 and its real roots are t1 = 10
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and t2 = 1. We have that a general solution to Equation (4) is of the form

rn = c1(10)
n + c2(1)

n .

Let us determine the constants c1 and c2, considering that r0 = 0 and r1 = 1, and we
obtain the system, {

0 = c1 + c2

1 = 10c1 + c2 .

Solving the system we find c1 =
1

9
and c2 = −1

9
. So we have just shown that:

Proposition 1. [1, 18] For all n ∈ N, we have

rn =
10n − 1

9
, (4)

where {rn}n≥0 is the repunit sequence.

The Equation (4) in Proposition 1, presents the classic and well-known Binet formula
for the sequence of repunit {rn}n≥0. The Binet formula is a powerful tool for understand-
ing sequences, as it allows us to derive key properties and even determine the generating
function of a sequence. By applying the Binet formula to a sequence defined by a recur-
rence relation, we can directly compute specific terms without needing to calculate each
preceding term. This not only aids in understanding the behavior and growth patterns of
the sequence but also enables us to analyze its properties more efficiently.

Remember that the repunit sequence {rn}n≥0 is recursively presented in base 10 by
linear recurrence Equation (3). The next results in this section can also be consulted in
this reference.

Considering the sequence of partial sums sn = r1 + r2 + · · · + rn, for n ≥ 1, where
{rn}n≥0 is the repunit sequence.

Proposition 2. [11] Let {rn}n≥0 be the repunit sequence, then

sn =
10(10n − 1)− 9n

81
,

where {sn}n≥0 partial sum of the elements of the {rn}n≥0.

Now the classical identity:

Proposition 3. [11] [Catalan’s Identity] Let m,n be any natural numbers. For m ≥ n

we have
r2m − rm−nrm+n = 10m−n · (rn)2 ,
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where {rn}n≥0 is the repunit sequence.

A direct consequence from Proposition 3.

Corollary 1. [11] [Cassini’s Identity] For all m ≥ 1, we have r2m − rm−1rm+1 = 10m−1,
where {rn}n≥0 is the the repunit sequence.

According [10], the exponential generating function f(x) of a sequence (an)n≥0 is a
power series of the form

f(x) = a0 + a1x+
a2x

2

2!
+ ...+

anx
n

n!
+ ... =

∞∑
n=0

anx
n

n!
.

In the next result, we consider an = rn and obtain the exponential generating function
for the repunit sequence {rn}n≥0.

Proposition 4. [4] For all n ≥ 0 the exponential generating function for the repunit
sequence {rn}n≥0 is

∞∑
n=0

rnt
n

n!
=

e10t − et

9
.

3 The repunit polynomial

Remember that the repunit polynomial sequence also falls under the category of poly-
nomial sequences Horadam type. Existing literature has already explored the concept
of generalized Horadam polynomial sequences, as seen in works [7, 17]. Kocer and
Horzum [7] in their research, Binet Formula, and Catalan and Cassini identities have been
established for generalized polynomial Horadam sequences. Although our proof focuses
on the specific polynomial sequence of repunit, it differs notably in terms of the roots of
the characteristic polynomial. Additionally, the cited work [7] discusses these identities in
relation to coefficients a, b, p, and q. Furthermore, Soykan [17] delves into broader sce-
narios, exploring generalized Horadam-Leonardo and Horadam-Leonardo-Lucas poly-
nomials. This examination underscores the interconnections among identities involving
Horadam, Horadam-Leonardo, and Horadam-Leonardo-Lucas polynomials.

First, we present the definition of repunit polynomials and follow some properties.

Definition 1. For all n ≥ 1, the polynomials is given by:

R1(x) = 1 , R2(x) = x+ 10 and Rn+2(x) = 11xRn+1(x)− 10Rn(x) , (5)

they are called repunit polynomials, with x being a real variable.
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Note that, for x = 1, the recurrence given in Equation (5) generates the sequence of
repunit numbers {rn}n≥0. Hence, we also say that these polynomials are associated with
the repunit sequence {rn}n≥0, a Horadam-type sequence.

In the Table (1) we present the repunit polynomials for 1 ≤ n ≤ 5.

Table 1: Repunit polynomials

n Rn(x)

1 1
2 x+ 10
3 11x2 + 110x− 10
4 121x3 + 1210x2 − 120x− 100
5 1331x4 + 13310x3 − 1430x2 − 2200x+ 100

Note that the recurrence Equation (5) has a characteristic equation given by

Y 2 − 11xY + 10 = 0 , (6)

whose roots are, in the unknown Y :

α(x) =
11x+

√
(11x)2 − 40

2
and β(x) =

11x−
√
(11x)2 − 40

2
. (7)

Note that α(x) + β(x) = 11x and α(x) · β(x) = 10.
With this, we demonstrate that,

Proposition 5. The characteristic equation (6) associated with the recurrence

Rn+2(x)− 11xRn+1(x) + 10Rn(x) = 0 , (8)

has as roots α(x) and β(x) is given by Equation (7), and {Rn}n≥0 is the repunit polyno-
mial sequence.

The Theorems 1 and 2 presented below, respectively, guarantee the existence and char-
acterize the roots (solutions) of the recurrence repunit polynomial is given by Equation
(5). It should be noted that C1(x) and C2(x) used in the following results are given in
function of x, for simplicity we will use the notation C1 = C1(x) and C2 = C2(x). As
long as there is no confusion.

Theorem 1. If the distinct roots of the characteristic Equation (6) are α(x) and β(x),
then

Zn = C1α
n + C2β

n
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is the solution of the equation from the recurrence relation 8, whatever the values C1 and
C2.

Proof. Replacing Zn = C1α
n + C2β

n in the recurrence Equation (5), after grouping the
terms, we have

C1α
n (α2 − 11xα + 10)︸ ︷︷ ︸

=0

+C2β
n (β2 − 11xβ + 10)︸ ︷︷ ︸

=0

= C1α
n0 + C2β

n0 = 0.

Therefore, Zn = C1α
n + C2β

n is the solution of the recurrence Equation 8.

Theorem 2. If the distinct roots of Equation (6) are α and β, then all solutions of the
recurrence Equation (5) are of the form

Zn = C1α
n + C2β

n . (9)

Proof. Let Tn be any solution of the recurrence Equation (5). Let us determine the func-
tions C1 and C2 that are solutions of the system of equations,{

C1α + C2β = 1

C1α
2 + C2β

2 = x+ 10

that is,

C1 =
−β + (x+ 10)

α(α− β)
, C2 =

α− (x+ 10)

β(α− β)
. (10)

We can state that Tn = C1α
n+C2β

n for all natural number n, which will show the desired
result. In effect, let An = Tn − C1α

n − C2β
n. Our interest is to show that An = 0 for all

n. There is,

An+2 − 11xAn+1 + 10An =

(Tn+2 − 11xTn+1 + 10Tn)− C1α
n(α2 − 11xα + 10)− C2β

n(β2 − 11xβ + 10).

The first parenthesis is equal to zero because Tn is a solution of recurrence Equation (5),
the last two parentheses are equal to zero because α and β are roots of Equation (6). Then
An+2 − 11xAn+1 + 10An = 0. And yet, as C1α+ C2β = 1 and C1α

2 + C2β
2 = x+ 10,

we have A1 = A2 = 0. But, if An+2 − 11xAn+1 + 10An = 0 and A1 = A2 = 0, then
An = 0 for all n.

It should be noted that the Theorem 2 is particular case for the repunit polynomials
Horadam-type sequence of Theorem 1 in [10].

In a similar way to Proposition 4, the next result will display the generating function
of the repunit polynomial sequence, namely:
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Theorem 3. For all n ≥ 0, the exponential generating function for the repunit polynomial
sequence is

∞∑
n=0

Rnt
n

n!
= C1e

αt + C2e
βt ,

where {Rn}n≥0 is the repunit polynomial sequence, and α and β are distinct roots of
Equation (6).

Proof. The exponential generating function for the repunit polynomial sequence is
∞∑
n=0

Rnt
n

n!
.

Making use of Equation (9), we obtain that

∞∑
n=0

Rnt
n

n!
=

∞∑
n=0

(C1α
n + C2β

n)
tn

n!

= C1

∞∑
n=0

αntn

n!
+ C2

∞∑
n=0

βntn

n!

= C1e
αt + C2e

βt ,

where C1, C2, α and β are given in Theorems 1 e 2.

In the Theorem 2, note that in the particular case where x = 2
√
10

11
, we have α = β =√

10. In this case, a solution of recurrence Equation (5) is given by,

Zn = c110
n/2 + c2n10

n/2, (11)

where c1 and c2 are constants. In fact, just replace the expression (11) in the recurrence
recurrence Equation (5), obtaining

c110
n+2
2 + c2(n+ 2)10

n+2
2 − 11x(c110

n+1
2 + c2(n+ 1)10

n+1
2 ) + 10(c110

n
2 + c2(n)10

n
2 )

= 10
n
2 c1 (10− 11x10

1
2 + 10)︸ ︷︷ ︸

=0

+10
n
2 c2((n+ 2)10− 11x(n+ 1)10

1
2 + 10n)

= 10
n
2 c2n (10− 11x10

1
2 + 10)︸ ︷︷ ︸

=0

+10
n
2 c2 (20− 11x10

1
2 )︸ ︷︷ ︸

=0

= 0.

This shows that Zn = c110
n/2 + c2n10

n/2 is the solution of the recurrence Equation (5).
The next result guarantees that the solutions of the recurrence Equation (5) are always

of the form Zn = c110
n/2 + c2n10

n/2, in the case where α = β. The demonstration of
the Theorem 4 will be omitted, but it is analogous to the demonstration of the Theorem 2,
for:

c1 =
2
√
10− (x+ 10)

10
, c2 =

−
√
10 + (x+ 10)

10
, (12)
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with x = 2
√
10

11
.

Theorem 4. Let α and β be the roots of Equation (6). If α = β =
√
10, then all solutions

of the recurrence Equation (5) are of the form

Zn = c110
n/2 + c210

n/2 , (13)

with c1 and c2 constant, and particular x = 2
√
10

11
.

It is important to note that Theorem 4 applies specifically to the repunit polynomials
in the Horadam-type sequence from Theorem 2 in [10].

Note that, if α and β are roots of Equation (6), we have

α2 = 11xα− 10 and β2 = 11xβ − 10. (14)

Multiplying the above expressions by αn−1 and βn−1, respectively, we obtain

αn+1 = 11xαn − 10αn−1 and βn+1 = 11xβn − 10βn−1. (15)

Therefore,

α2 = 11xα− 10 = P2(x)α− 10P1(x)

α3 = 11xα2 − 10α = 11x(11xα− 10)− 10α = ((11x)2 − 10︸ ︷︷ ︸
P3(x)

)α− 10(11x︸︷︷︸
P2(x)

)

α4 = 11xα3 − 10α2 = ((11x)3 − 220x︸ ︷︷ ︸
P4(x)

)α− 10((11x)2 − 10︸ ︷︷ ︸
P3(x)

)

α5 = ((11x)4 − 3 · 10 · (11x)2 + 102︸ ︷︷ ︸
P5(x)

)α− 10((11x)3 − 220x︸ ︷︷ ︸
P4(x)

)

· · ·
αn = 11xαn−1 − 10αn−2 = Pn(x)α− 10Pn−1(x).

Then we have the following result:

Proposition 6. Let α(x) and β(x) be the roots of Equation (6), with α ̸= β, for n ≥ 2 ,
then

(
α(x)

)n
= (Pn(x))α(x)− 10 · Pn−1(x), with P1(x) = 1 and

Pn(x) = (11x)n−1 +
n∑

j=2

(−10)
j
2

(
n− j)

)
(11x)n−j for n and j even ;
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Pn(x) = (11x)n−1 +
n∑

j=3

(−10)
j−1
2

(
n− (j − 1)

)
(11x)n−j for n and j odd .

Note that the Proposition 6 also applies to(
β(x)

)n
= Pn(x)β(x)− 10 · Pn−1(x). (16)

Therefore, we can write

αn − βn

α− β
= Pn(x), for all natural n. (17)

According to the Theorem 2, the solutions of the recurrence Equation (5) are of the
form given in Equation (13), with C1 and C2 constant. Therefore, we can rewrite the
recurrence solution as follows:

Rn = C1α
n + C2β

n (18)

=
−β + (x+ 10)

α(α− β)
· αn +

α− (x+ 10)

β(α− β)
· βn

=
−αn−1β + (αn−1 − βn−1)(x+ 10) + βn−1α

α− β

=
αn−1 − βn−1

α− β
· (x+ 10)− αβ · α

n−2 − βn−2

α− β

= Pn−1(x) · (x+ 10)− 10 · Pn−2(x). (19)

Also note that each polynomial Pn(x) can be given recursively, since

αn+2 = 11xαn+1 − 10αn (20)

βn+2 = 11xβn+1 − 10βn. (21)

Subtracting the equalities (20) and (21) and subsequently dividing by (α− β), we obtain

αn+2 − βn+2

α− β
= 11x · α

n+1 − βn+1

α− β
− 10 · α

n − βn

α− β
.

Which guarantees the following result:

Proposition 7. For every n ≥ 1 natural number, we have that

Pn+2(x) = 11x · Pn+1(x)− 10 · Pn(x),

with P1(x) = 1 and P2(x) = 11x.
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Let us now look at some classic identities.

Theorem 5. [Catalan’s identity] Let m,n be any natural numbers. For m ≥ n we have

(Rm)
2 −Rm−n ·Rm+n = C1C2 · 10m−n

[
2 · 10n − (α2n + β2n)

]
,

where {Rn}n≥0 is the repunit polynomial sequence, and α and β are distinct roots of
Equation (6).

Proof. Using Theorem 2, we have

(Rm)
2 − Rm−n ·Rm+n = (C1α

m + C2β
m)2 −

− (C1α
m−n + C2β

m−n)(C1α
m+n + C2β

m+n)

= C2
1α

2m + 2 · 10m · C1C2 + C2
2β

2m +

−
(
C2

1α
2m + C1C2 · 10m−n · (α2n + β2n) + C2

2β
2m

)
= C1C2 · 10m−n ·

[
2 · 10n − (α2n + β2n)

]
,

as required.

Making n = 1, follows directly from Theorem 5 that:

Corollary 2. [11] [Cassini’s Identity] For all m ≥ 1, we have

(Rm)
2 −Rm+1Rm−1 = C1C2 · 10m−1

[
20− (α2 + β2)

]
,

where {Rn}n≥0 is the repunit polynomial sequence, and α and β are distinct roots of
Equation (6).

4 Sum of terms involving the polynomial sequence

Here the polynomial Sn := Sn(x) represents the partial sum of n terms of Rn(x), that

is, Sn = R1 + R2 + · · · + Rn =
n∑

i=1

Ri. We did not find a sum of terms involving the

polynomial sequence in the literature we consulted for generalized polynomial Horadam
sequences.

We will show that Sn can also be given by a recurrence.

Proposition 8. Consider S1 = 1, S2 = 11 + x and for all n ≥ 3, we have

Sn =
Rn+1 − 10Rn + 10x− 11

11x− 11
, (22)
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where {Rn}n≥0 is the repunit polynomial sequence, and {Sn}n≥0 partial sum of the ele-
ments of {Rn}n≥0.

Proof. Note that,

R1 = 1

R2 = 10 + x

R3 = 11xR2 − 10R1

· · ·
Rn = 11xRn−1 − 10Rn−2.

Adding the above equalities, we have

Sn = R1 +R2 + · · ·+Rn

= 1 + (x+ 10) + (11xR2 − 10R1) + · · ·+ (11xRn−1 − 10Rn−2)

= (11 + x) + 11x(R2 +R3 + · · ·+Rn−1)− 10(R1 +R2 + · · ·+Rn−2)

= 11x(R1 +R2 + · · ·+Rn−1 +Rn)− 10(R1 + · · ·+Rn−2 +Rn−1 +Rn)

+(11 + x)− 11x(R1 +Rn) + 10(Rn−1 +Rn)

= 11xSn − 10Sn + (11 + x)− 11x(R1 +Rn) + 10(Rn−1 +Rn) .

So
11xSn − 11Sn = 11x(R1 +Rn)− 10(Rn−1 +Rn)− (11 + x) ,

which is equivalent to

Sn(11x− 11) = Rn+1 − 10Rn + 10x− 11 ,

and we get the result.

In Equation 22, we can’t do it x = 1, but we have sn = r1 + r2 + · · · + rn, and it
follows from the Proposition 2 that

sn =
10(10n − 1)− 9n

81
=

10n+1 − 9n− 10

81
,

which represents the partial sum of n terms of {rn}n≥0.

It is worth mentioning that the series Sn does not converge to any value of x, which
can be verified using the d’Alembert criterion (or ratio test), that is, determining the value
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L of the limit (see [9]):

lim
n→∞

∣∣∣∣Rn+1

Rn

∣∣∣∣ = L. (23)

Note that, considering α and β real numbers (positive or negative). That is, x ∈(
−∞, 2

√
10

11

)
∪
(

2
√
10

11
,∞

)
. In the particular case where x is positive, that is, x > 2

√
10

11
,

we have L = |α| and L = |β| in the other case. In both cases, it is impossible for
L < 1, which implies the divergence of the series. The case L = 1 also does not occur
convergence.

5 Considerations

According [2] the polynomials are indispensable mathematical instruments, as they are
straightforwardly defined and can be rapidly calculated on computer systems, they can be
differentiated and integrated with ease. This reminder of the importance of polynomials
and the fact that there is no polynomial associated with this particular Horadam-type se-
quence in the literature motivated our study. So, in this work, it was analyzed a particular
case of a Horadam polynomial sequence, and our contribution to discrete mathematics is
the specification from the results for a repunit polynomial sequence.

In general, the roots of polynomial equations of degree n become more difficult to
find as n increases, and for n ≥ 5, no general formula can be applied. Here, we present
the repunit polynomials of degree n. However, it is not the focus of the work to determine
the roots of these polynomials.

The results analyzed in this work aim to present some connections between a class of
polynomials, the repunit polynomials, and the numerical sequence of repunit. They are
highlighting the generating function of the repunit polynomial.

In the context of future work, we aim to carry out a thorough investigation into the
matrix representation of this sequence, its generating functions, and a characterization of
the roots of the repunit polynomial.
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