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Abstract. Since Dugundji, it has been known that there is no finite matrix semantics for
modal logics between S1 and S5. However, it remains interesting to know what can be valid
among the modal laws relative to many-valued matrices. The logic PM4N was introduced
by Jean-Yves Beziau as a modal and 4-valued system, planned to accept several modal
laws. From that matrix semantics, the paper shows some valid results. In this paper, we
compare the system PM4N with two well-known logics: the usual modal system S5 and
the paraconsistent logic J3. We show that the set of S5 theorems is properly included in the
set of PM4N theorems; and every theorem of PM4N is a theorem of J3.
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Resumo. Desde Dugundji, é conhecido que não há semântica matricial finita para lógicas
modais entre S1 e S5. No entanto, ainda é interessante saber o que pode ser válido entre
as leis modais em relação à matrizes multivaloradas. A lógica PM4N foi introduzida por
Jean-Yves Beziau como um sistema modal de 4 valores, planejado para aceitar várias leis
modais. A partir dessa semântica matricial, o artigo apresenta alguns resultados válidos.
Neste artigo, comparamos o sistema PM4N com duas lógicas bem conhecidas: o sistema
modal usual S5 e a lógica paraconsistente J3. Mostramos que o conjunto de teoremas de S5
está propriamente incluso no conjunto de teoremas de PM4N; e todo teorema de PM4N é
teorema de J3.
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Resumen. Desde Dugundji, se sabe que no existe una semántica matricial finita para lógicas
modales entre S1 y S5. Sin embargo, resulta interesante conocer qué puede ser válido entre
las leyes modales en relación con matrices multivalentes. La lógica PM4N fue introducida
por Jean-Yves Beziau como un sistema modal de 4 valores, diseñado para aceptar varias
leyes modales. A partir de esta semántica matricial, el artículo presenta algunos resultados
válidos. En este artículo, comparamos el sistema PM4N con dos lógicas bien conocidas:
el sistema modal usual S5 y la lógica paraconsistente J3. Mostramos que el conjunto de
teoremas de S5 está adecuadamente incluido en el conjunto de teoremas de PM4N; y que
todo teorema de PM4N es un teorema de J3.

Palabras-clave. Leyes modales, lógicas de cuatro valores, lógicas modales, lógicas para-
consistentes.
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1 Introduction

The logic PM4N was introduced by Beziau [3] as a basic 4-valued and modal logic.
The system was proposed to keep many important modal notions.

In this paper, we present the system PM4N with the same matrix semantic, some
simple variation on the symbols, and, as Beziau [3], we can show several modal laws
valid in PM4N, but also laws and rules not valid in this 4-valued system. These validities
and non-validities in PM4N are all verified in TPM4N, the tableaux system for this logic
presented in [15]. It is relevant for the comparison with S5.

Additionally, we eliminate one of the four values, exactly a non-designated element,
to keep the true part of the system, and observe that we obtain the paraconsistent logic J3.
Thus, we link the two systems and investigate some modal aspects also in this 3-valued
system.

In Section 2, we present the logic PM4N. In the next section, we show the validity of
many modal laws and compare this logic with the modal logic S5. In the last section, by
the exclusion of one value, a non-designated value, we obtain a paraconsistent 3-valued
system, which coincides with the logic J3 ([9] and [10]). Then we can compare the set of
theorems of the two logics using some notions of translations between logics.
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2 The logic PM4N

The logic PM4N is a propositional, modal and four-valued system. It is consti-
tuted, in a usual way, over a propositional language with the following set of operators
L = {∨,¬,□}, in which the propositional operators ∨, ¬ and □ denote, respectively, the
notions of disjunction, negation and necessity.

By simplicity, we use the same symbols from the propositional language also in the
semantic structure for PM4N. Beziau [3] picked as basic also the operator ∧, but consid-
ering that ∧ and ∨ are inter-definable in PM4N, we have selected only the three above
operators.

The original semantic for PM4N is defined by the following matrix semantics:

MPM4N = ({0, n, b, 1},∨,¬,□, {b, 1}).

Then, for MPM4N, the elements b and 1 are the designated values and 0 and n are the
non-designated values. As usual, we can indicate the set of designated or true values by
D = {b, 1}.

Before showing the tables for these operators, let us stress the algebraic motivation,
since we imagine that with these notions, the understanding of tables will be immediate.
We must consider these four values disposed in a Boolean algebra of four elements as this
following Hasse diagram.

1

⧸ ⧹
n b

⧹ ⧸
0

The disjunction is interpreted as the supremum, that is, for x, y ∈ {0, n, b, 1}, the
element x ∨ y = sup{x, y}. The negation corresponds to the boolean complement, and
the necessitation ensures that only the value 1 is necessarily true.

The meanings of the basic operators are in the following tables.

∨ 0 n b 1

0 0 n b 1
n n n 1 1
b b 1 b 1
1 1 1 1 1

¬
0 1
n b
b n
1 0

□

0 0
n 0
b 0
1 1
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We have a four-valued logic, and as usual, the values 0 and 1 represent the falsun and
the verun, but b and n are two complementary values that are not in a linear order. This
negation is a type of classical negation, since it maps true values into false values and
maps false values into true values.

This algebraic structure of PM4N is isomorphic to the Boolean algebra of four ele-
ments, P(2) = {∅, {0}, {1}, {0, 1}}, generated by a set of two elements 2 = {0, 1}.

The formal matrix semantics of PM4N is the following.
V ar(PM4N) = {p1, p2, p3, ...} is the set of the propositional variables of PM4N and

For(PM4N) is the set of the formulas of PM4N, defined in the usual way.

Definition 1. A restrict valuation for PM4N is a function

v : V ar(PM4N) → {0, n, b, 1}.

Definition 2. A valuation for PM4N is a function that extends, in an unique way, the
restrict valuation for the whole set For(PM4N), according to the above matrices.

Definition 3. A formula φ ∈ For(PM4N) is valid in MPM4N if, for every PM4N-
valuation v, v(φ) ∈ D.

Definition 4. For Γ ∪ {φ} ⊆ For(PM4N), the set of formulas Γ implies logically the
formula φ, or φ is a semantic consequence of Γ, if, for every PM4N-valuation v, always
that v(Γ) ⊆ D, it follows that v(φ) ∈ D.

Thus, we have that for every valuation v:

Γ ⊨ φ ⇐⇒ (v(Γ) ⊆ D ⇒ v(φ) ∈ D).

Besides these primitive and basic operators, we can define the following operators in
PM4N.

Possibility: ♢x =def ¬□¬x
Conjunction: x ∧ y =def ¬(¬x ∨ ¬y)
Conditional: x→ y =def ¬x ∨ y
Biconditional: x↔ y =def (x→ y) ∧ (y → x)

Consistency: ◦x =def □x ∨ ¬♢x
Inconsistency (or Contingency): •x =def ♢x ∧ ¬□x
Paraconsistent negation: ∼ x =def ¬x↔ ◦x
The meanings of these new operators are given by the following tables.
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♢

0 0
n 1
b 1
1 1

∧ 0 n b 1

0 0 0 0 0
n 0 n 0 n
b 0 0 b b
1 0 n b 1

→ 0 n b 1

0 1 1 1 1
n b 1 b 1
b n n 1 1
1 0 n b 1

↔ 0 n b 1

0 1 b n 0
n b 1 0 n
b n 0 1 b
1 0 n b 1

◦
0 1
n 0
b 0
1 1

•
0 0
n 1
b 1
1 0

∼
0 1
n n
b b
1 0

In modal logics, a possible but not necessary proposition is called contingent, and in
the logic PM4N, its meaning coincides with the meaning of inconsistency of logics of
formal inconsistency (LFI). The operators of consistency and inconsistency are comple-
mentary, and an interpretation for the consistency is that the classical values {0, 1} are
consistent, while the non-classical {n, b} are not consistent.

Finally, the negation ∼ is paraconsistent because it maps the true value b into b and
the false value n into n. So in some cases, a proposition and its negation can both be true.

3 Comparing PM4N and S5

The logic PM4N was planned to keep a lot of modal laws. However, since Dugundji,
1940 ([11], [8]), we know that there is no finite matrix semantics for the hierarchy of
modal logics between S1 and S5 and, after Dugundji and Kripke, between K and S5.

Now, considering the completely adequate tableaux system for PM4N presented in
[15], we can verify the validity of several modal sentences, as well as the non-validity of
other central modal results. We will compare the set of theorems of PM4N and S5.

Considering Mendelson [16] and Chellas [7], the logic S5 can be determined by the
following axiomatic system:

(Ax1) ψ → (φ→ ψ)

(Ax2) (ψ → (φ→ σ)) → ((ψ → φ) → (ψ → σ))

(Ax3) (¬ψ → φ) → ((¬ψ → ¬φ) → ψ))

(MP) ψ, ψ → σ / σ
The Boolean part plus:
(Definition) ♢ψ ↔ ¬□¬ψ
(K) □(ψ → φ) → (□ψ → □φ)
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(T) □ψ → ψ

(5) ♢ψ → □♢ψ

(Nec) ⊢ ψ / ⊢ □ψ.

Proposition 1. All the following modal formulas are valid in PM4N.
(i) K: □(φ→ ψ) → (□φ→ □ψ) (ii) D: □φ→ ♢φ

(iii) T: □φ→ φ (iv) T’: φ→ ♢φ

(v) 4: □φ→ □□φ (vi) 4’: ♢♢φ→ ♢φ

(vii) 5: ♢φ→ □♢φ (viii) 5’: ♢□φ→ □φ

(ix) B: φ→ □♢φ (x) B’: ♢□φ→ φ

(xi) M: □(φ ∧ ψ) → □φ ∧□ψ (xii) C: □φ ∧□ψ → □(φ ∧ ψ)
(xiii) R: □(φ ∧ ψ) ↔ □φ ∧□ψ (xiv) R’: ♢φ ∨ ♢ψ ↔ ♢(φ ∨ ψ).

Proof. For economy, we are going to omit the tableaux for these formulas. These validi-
ties can be found in ([15], p. 44-48).

Proposition 2. The following modal formulas and rules are not valid in PM4N.
(i) ⊮ □(φ ∨ ψ) → □φ ∨□ψ

(ii) ⊮ ♢φ ∧ ♢ψ → ♢(φ ∧ ψ)
(iii) RN: φ ⊮ □φ, even when φ is valid in PM4N.
(iv) RM: φ→ ψ ⊮ □φ→ □ψ

(v) RM’: φ→ ψ ⊮ ♢φ→ ♢ψ

Proof. (i) As a counter-example, take the values v(φ) = b and v(ψ) = n. If v(φ) = b

and v(ψ) = n, then υ(□(φ ∨ ψ) → □φ ∨ □ψ) = □(b ∨ n) → □b ∨ □n = □1 →
0 ∨ 0 = 1 → 0 = 0. (ii) Like in (i), just take the values v(φ) = b and v(ψ) = n and so
υ(♢φ ∧ ♢ψ → ♢(φ ∧ ψ)) = 0. (iii) A non-closed tableau for this formula can be found
in [15]. (iv) For v(φ) = 1 and v(ψ) = b, we have 1 → b and 1 → 0, then v(φ → ψ) = b

and v(□φ→ □ψ) = 0. (v) For v(φ) = n and v(ψ) = 0, we have n→ 0 and 1 → 0, then
v(φ→ ψ) = b and v(♢φ→ ♢ψ) = 0.

The non-validity of these rules makes the conception of the logic PM4N a little
strange. A valid conditional does not transfer its validity to these several cases.

At first, we had imagined that PM4N would have fewer theses than S5, exactly be-
cause the two systems share the Boolean part, every modal usual axiom of S5 is valid in
the MPM4N, and some of the usual rules for S5 are not valid in PM4N. But it is not the
case, and as Beziau [3] has mentioned, all of the theorems of S5 are theorems of PM4N.

Furthermore, the formula β:

□φ ∨□(φ→ ψ) ∨□(φ→ ¬ψ)
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is not a theorem of S5, but it is valid in PM4N.

The proof that this formula is not a S5-theorem is in [18] and below we can see that it
is valid in PM4N.

φ ψ φ→ ψ φ→ ¬ψ □φ □(φ→ ψ) □(φ→ ¬ψ) β

0 0 1 1 0 1 1 1
0 n 1 1 0 1 1 1
0 b 1 1 0 1 1 1
0 1 1 1 0 1 1 1
n 0 b 1 0 0 1 1
n n 1 b 0 1 0 1
n b b 1 0 0 1 1
n 1 1 b 0 1 0 1
b 0 n 1 0 0 1 1
b n n 1 0 0 1 1
b b 1 n 0 1 0 1
b 1 1 n 0 1 0 1
1 0 0 1 1 0 1 1
1 n n b 1 0 0 1
1 b b n 1 0 0 1
1 1 1 0 1 1 0 1

Definition 5. A valid formula in which its last column contains only the value 1 is called
necessarily true.

The formula β is necessarily true.

So, we will see that the set of S5-theorems is included in the set of PM4N-theorems
(or valid formulas of PM4N).

All schemes of axioms of S5 are formulas necessarily true, as we can see in some
cases. The classical axioms are classically valid in any Boolean algebra, and the model
of 4-values ({0, n, b, 1},∨,¬, {0, 1}) is a Boolean algebra. The MP takes tautologies into
tautologies.
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ψ □ψ ♢ψ Def K 5
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
n 0 1 1 1 1
n 0 1 1 1 1
n 0 1 1 1 1
n 0 1 1 1 1
b 0 1 1 1 1
b 0 1 1 1 1
b 0 1 1 1 1
b 0 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

Theorem 1. Every theorem of S5 is valid in PM4N.

Proof. Each axiom above is necessarily true, and the rules (MP) and (Nec) take neces-
sarily true sentences into necessarily true sentences. Thus, all of the theorems of S5 are
necessarily true.

Finally, we have that every S5-theorem is valid in the matrix semantics for PM4N,
and PM4N has valid formulas that are not valid for S5. Thus, we have a proper inclusion
in the set of theorems.

4 The relation between PM4N and J3

When we look for a four-valued logic similar to PM4N, with two distinguished ele-
ments D = {b, 1}, we can think that we have a rank for the true sentences, the necessarily
true (only the value 1) and the possibly true (values b and 1). But the group of non-true
sentences is a complementary set.

It seems that if we collapse the elements 0 and n, the valid sentences remain almost
the same. Thus, we will develop a reflection with a three-valued semantic disposed in a
partial order without the element n.
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So we start from:

MLM3N = ({0, b, 1},∨,¬,□, {b, 1}),

such that D = {b, 1} and consider the order:

1
| ⧹
| b
| ⧸
0

↬

1
|
b
|
0

A first observation is that with exactly three elements, the partial order loses relevance,
because any two elements are comparable and thus the order is linear.

This way, we obtain a three-valued paraconsistent logic, following the original intu-
itions, in the propositional language L = {¬,□,∨}, in which the first two operators are
unary and the last one is binary, with the following tables.

¬
0 1
b 0
1 0

∨ 0 b 1

0 0 b 1
b b b 1
1 1 1 1

□

0 0
b 0
1 1

With the three elements {0, b, 1}, we don’t have a Boolean algebra anymore, but con-
sidering that the negation ¬ of PM4N is classical, then we take ¬b = 0.

Using similar definitions for other operators, we have the following ones with the
respective tables:

Possibility: ♢x =def ¬□¬x
Conjunction: x ∧ y =def inf{x, y}
Conditional: x→ y =def ¬x ∨ y
Biconditional: x↔ y =def (x→ y) ∧ (y → x)

Consistency: ◦x =def □x ∨ ¬♢x
Inconsistency (or Contingency): •x =def ♢x ∧ ¬□x
Paraconsistent negation: ∼ x =def x↔ •x.

♢

0 0
b 1
1 1

∧ 0 b 1

0 0 0 0
b 0 b b
1 0 b 1

→ 0 b 1

0 1 1 1
b 0 b 1
1 0 b 1
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↔ 0 b 1

0 1 0 0
b 0 b b
1 0 b 1

◦
0 1
b 0
1 1

•
0 0
b 1
1 0

∼
0 1
b b
1 0

If we take as primitive the operators ∼,♢ and ∨, we can define all these other operators
as:

Necessary: □x =def ∼ ♢ ∼ x

Classical negation: ¬x =def ∼ ♢x,
and observe that this 3-valued restriction generates exactly the well-known paraconsistent
logic J3.

The logic J3 was introduced by D’Ottaviano and da Costa [9], in 1970, from this
three-valued matrix semantics, involving aspects of the recently created paraconsistent
logics. The system J3 has been studied by other authors as [1], [2], [13] and [19] and with
different motivations, denominations and approaches [4] and [6].

Carnielli and Marcos [5] and Carnielli, Coniglio and Marcos [4] introduced a family
of paraconsistent logics, named the logics of formal inconsistency (LFI’s), in which the
consistency operator occurs in the language as a primitive operator; and the first system of
the family of LFI’s, the LFI1 logic, coincides with the logic J3. The consistency operator
or the operator of ‘good behaviour’ points that if the proposition assumes only the values
0 or 1, then it is well-behaved or acts accordingly to the classical logic.

The three values of J3, given by the set {0, 1
2
, 1}, were thought in a linear order,

however for only three elements there are no variances between the partial and linear
order.

Considering that we are interested in obtaining deductive systems for PM4N, we will
consider the following axiomatic system for J3 [13].

Schemes of Axioms:
(A1) φ→ (ψ → φ)

(A2) (φ→ (ψ → σ)) → ((φ→ ψ) → (φ→ σ))

(A3) (φ ∧ ψ) → φ

(A4) (φ ∧ ψ) → ψ

(A5) (σ → φ) → ((σ → ψ) → (σ → (φ ∧ ψ)))
(A6) φ→ (φ ∨ ψ)
(A7) ψ → (φ ∨ ψ)
(A8) (φ→ σ) → ((ψ → σ) → ((φ ∨ ψ) → σ))

(A9) ∼∼ φ↔ φ

Braz. Elect. J. Math., Ituiutaba, v.5, jan/dez 2024, p. 1 - 22. 10



Modal laws in many-valued systems

(A10) φ ∨ (φ→ ψ)

(A11) ◦φ→ (φ→ (∼ φ→ ψ))

(A12) ∼ ◦φ→ (φ∧ ∼ φ)

(A13) ◦φ→ ◦ ∼ φ

(A14) (◦φ ∧ ◦ψ) → ◦(φ→ ψ)

(A15) (◦φ ∧ ◦ψ) → ◦(φ ∨ ψ).

Deduction rules:
(MP) φ, φ→ ψ ⊢ ψ.

The axioms (A1) - (A8) plus the rule MP point that J3 is constructed over the positive
logic. The axioms (A9) and (A10) formalize aspects of negation of J3. The axioms (A11)
- (A15) make explicit the paraconsistent aspects of J3.

The validity of the J3-propositions can be tested through the three-valued matrix, or
with the following 3-valued tableaux system adapted from PM4N [15].

A 3-valued tableaux system for J3 or LM3N

t expansion:

t φ

b φ | 1 φ

Negation:

1 ¬φ
0 φ

0 ¬φ
t φ

Paraconsistent negation:

0 ∼ φ

1 φ

b ∼ φ

b φ

1 ∼ φ

0 φ

Conjunction:

0 φ ∧ ψ
0 φ | 0 ψ

b φ ∧ ψ
b φ | 1 φ

t ψ | b ψ

1 φ ∧ ψ
1 φ

1 ψ

Disjunction:
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0 φ ∨ ψ
0 φ

0 ψ

b φ ∨ ψ
b φ | 0 φ

0 ψ | b ψ | b ψ

1 φ ∨ ψ
1 φ | 1 ψ

Conditional:

0 φ→ ψ

0 ψ

t φ

b φ→ ψ

b ψ

t φ

1 φ→ ψ

0 φ | 1 ψ

Modal operators:

0 □φ

0 φ | b φ

1 □φ

1 φ

0 ♢φ

0 φ

1 ♢φ

t φ

Consistency operator:

0 ◦φ
b φ

1 ◦φ
0 φ | 1 φ

Definition 6. A branch of a tableau of TLM3N or TJ3 is closed if the marked formulas
occur in the path:

(i) k1 φ and k2 φ, for any formula φ and k1 ̸= k2;
(ii) b ∗ φ, for any formula ∗φ, with ∗ ∈ {□,♢, ◦}.

Definition 7. A tableau of TLM3N or TJ3 is closed if all of its branches are closed.

(A9) ⊩ ∼∼ φ↔ φ

(i) ⊩ ∼∼ φ→ φ

0 ∼∼ φ→ φ

0 φ

t ∼∼ φ

b ∼∼ φ

b ∼ φ

b φ

1 ∼∼ φ

0 ∼ φ

1 φ

× ×

(ii) ⊩ φ→∼∼ φ

0 φ→∼∼ φ

0 ∼∼ φ

t φ

1 ∼ φ

0 φ

×
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(A10) ⊩ φ ∨ (φ→ ψ)

0 φ ∨ (φ→ ψ)

0 φ

0 φ→ ψ

0 ψ

t φ

×

(A13) ⊩ ◦φ→ ◦ ∼ φ

0 ◦ φ→ ◦ ∼ φ

0 ◦ ∼ φ

t ◦ φ
b ∼ φ

b φ

b ◦ φ 1 ◦ φ

0 φ 1 φ

×

× ×

(A11) ⊩ ◦φ→ (φ→ (∼ φ→ ψ))

0 ◦ φ→ (φ→ (∼ φ→ ψ))

0 φ→ (∼ φ→ ψ)

t ◦ φ
0 ∼ φ→ ψ

t φ

0 ψ

t ∼ φ

b ◦ φ 1 ◦ φ

0 φ 1 φ

b φ 1 φ

b ∼ φ

b φ

1 ∼ φ

0 φ

×

×

×

× ×

(A14) ⊩ (◦φ ∧ ◦ψ) → ◦(φ→ ψ)

0 (◦φ ∧ ◦ψ) → ◦(φ→ ψ)

0 ◦ (φ→ ψ)

t ◦ φ ∧ ◦ψ
b φ→ ψ

b ψ

t φ

b ◦ φ ∧ ◦ψ

b ◦ φ 1 ◦ φ
b ◦ ψ

1 ◦ φ ∧ ◦ψ
1 ◦ φ
1 ◦ ψ

0 ψ 1 ψ

×
×

× ×
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(A12) ⊩ ∼ ◦φ→ (φ∧ ∼ φ)

0 ∼ ◦φ→ (φ∧ ∼ φ)

0 φ∧ ∼ φ

t ∼ ◦φ

0 φ

b ∼ ◦φ
b ◦ φ

1 ∼ ◦φ
0 ◦ φ
b φ

0 ∼ φ

1 φ

b ∼ ◦φ
b ◦ φ

1 ∼ ◦φ
0 ◦ φ
b φ

×
× ×

×

(A15) ⊩ (◦φ ∧ ◦ψ) → ◦(φ ∨ ψ)

0 (◦φ ∧ ◦ψ) → ◦(φ ∨ ψ)
0 ◦ (φ ∨ ψ)
t ◦ φ ∧ ◦ψ
b φ ∨ ψ

b ◦ φ ∧ ◦ψ

b ◦ φ b ◦ ψ

1 ◦ φ ∧ ◦ψ
1 ◦ φ
1 ◦ ψ

b φ

0 ψ

0 φ 1 φ

b ψ

0 φ 1 φ

0 φ

b ψ

0 φ

0 ψ 1 ψ

1 φ

× ×

× × × ×
× ×

×

4.1 On the axioms of J3 into PM4N

Now, we adapt TPM4N presented in ([15], p. 42-44), the tableaux system of PM4N, for
the operator of consistency and the paraconsistent negation. Of course, the new tableaux
rules comes from the analysis of ◦-matrix and ∼-matrix given in the second section.
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Consistency operator:

0 ◦φ
n φ | b φ

1 ◦φ
0 φ | 1 φ

Paraconsistent negation:

0 ∼ φ

1 φ

n ∼ φ

n φ

b ∼ φ

b φ

1 ∼ φ

0 φ

We need to include a specific condition to the closure of the new tableaux.

Definition 8. A branch of a tableau of TPM4N is closed if the marked formulas occur in
the path:

(i) k1 φ and k2 φ, for any formula φ and k1 ̸= k2;

(ii) n or b ∗ φ, for any formula ∗φ, with ∗ ∈ {□,♢, ◦}.

(A12) ⊮ ∼ ◦φ→ (φ∧ ∼ φ)

f ∼ ◦φ→ (φ∧ ∼ φ)

0 ∼ ◦φ→ (φ∧ ∼ φ)

1 ∼ ◦φ
0 φ∧ ∼ φ

0 ◦ φ

n φ

0 φ 0 ∼ φ

1 φ

b φ

n ∼ φ

n φ

n φ

b ∼ φ

b φ

b φ

0 φ 0 ∼ φ

1 φ

b φ

n ∼ φ

n φ

n φ

b ∼ φ

b φ

×
×

× ×

×
×

× ×
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f ∼ ◦φ→ (φ∧ ∼ φ)

n ∼ ◦φ→ (φ∧ ∼ φ)

b ∼ ◦φ
f φ∧ ∼ φ

b ◦ φ

1 ∼ ◦φ
n φ∧ ∼ φ

0 ◦ φ

n φ

n φ

n ∼ φ

n φ

1 ∼ φ

0 φ

1 φ

b φ

n φ 1 φ

×

×

× × ×

There is an open branch, such that υ(φ) = n. So A12 does not hold.

(A9) ⊩ ∼∼ φ↔ φ

(i) ⊩ ∼∼ φ→ φ

f ∼∼ φ→ φ

0 ∼∼ φ→ φ

1 ∼∼ φ

0 φ

0 ∼ φ

1 φ

n ∼∼ φ→ φ

b ∼∼ φ

f φ

b ∼ φ

b φ

1 ∼∼ φ

n φ

0 ∼ φ

1 φ×
× ×

(ii) ⊩ φ→∼∼ φ
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f φ→∼∼ φ

0 φ→∼∼ φ

1 φ

0 ∼∼ φ

1 ∼ φ

0 φ

n φ→∼∼ φ

b φ

f ∼∼ φ

n ∼∼ φ

n ∼ φ

n φ

0 ∼∼ φ

1 ∼ φ

0 φ

1 φ

n ∼∼ φ

n ∼ φ

n φ×

× ×

×

(A10) ⊩ φ ∨ (φ→ ψ)

f φ ∨ (φ→ ψ)

0 φ ∨ (φ→ ψ)

0 φ

0 φ→ ψ

1 φ

n φ ∨ (φ→ ψ)

n φ

f φ→ ψ

0 φ→ ψ

1 φ

n φ→ ψ

b φ 1 φ

0 φ

n φ→ ψ

b φ 1 φ

×

×
× ×

× ×

(A11) ⊩ ◦φ→ (φ→ (∼ φ→ ψ))

The law above is valid in PM4N.

(A13) ⊩ ◦φ→ ◦ ∼ φ
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f ◦ φ→ ◦ ∼ φ

0 ◦ φ→ ◦ ∼ φ

1 ◦ φ
0 ◦ ∼ φ

0 φ

n ∼ φ

n φ

b ∼ φ

b φ

1 φ

n ∼ φ

n φ

b ∼ φ

b φ

n ◦ φ→ ◦ ∼ φ

b ◦ φ 1 ◦ φ
n ◦ ∼ φ

× × × ×

×
×

The next two laws are also valid in PM4N.
(A14) ⊩ (◦φ ∧ ◦ψ) → ◦(φ→ ψ)

(A15) ⊩ (◦φ ∧ ◦ψ) → ◦(φ ∨ ψ).

4.2 Comparing J3 and PM4N

Using some notions about translations between logics, we show that every valid for-
mula of PM4N is also valid in J3, but J3 has more theses than PM4N.

Da Silva, D’Ottaviano and Sette [17], in 1999, initiate the development of a theory
of translations between logics. Their definition of translation between logics uses a very
general characterization of logic.

Definition 9. A consequence operator on a set L is a function C : P(L) → P(L) such
that, for every X, Y ⊆ L:

(i) X ⊆ C(X);
(ii) X ⊆ Y ⇒ C(X) ⊆ C(Y );
(iii) C(C(X)) ⊆ C(X).

This is the Tarski’s consequence operator or closure operator.

Definition 10. Abstract logic is a pair L = ⟨L,C⟩, such that L is any set, the domain of
L, and C is a consequence operator on L.

The following general definition of translation between logics was proposed by da
Silva, D’Ottaviano and Sette [17].

Definition 11. A translation from a logic L1 = ⟨L1, C1⟩ into a logic L2 = ⟨L2, C2⟩ is a
function t : L1 → L2 such that, for any X ⊆ L1:

t(C1(X)) ⊆ C2(t(X)).
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The definition of abstract logic requests only set theory components. But in general
we handle logics as pairs L = ⟨L,C⟩, such that L is a formal language andC is a standard
consequence operator in the set of formulas of L denoted by For(L).

Definition 12. A logic system defined over L is a pair L = ⟨L,C⟩, in which L is a formal
language and C is a standard consequence operator in the free algebra For(L) of the
formulas of L.

When L1 and L2 are logic systems with associated syntactic consequence relations
⊢1 and ⊢2, respectively, the definition of translation between logics can be presented in
terms of the consequence relations: t is a translation from L1 into L2 if, and only if, for
Γ ∪ {φ} ⊆ For(L1), it follows that:

Γ ⊢1 φ⇒ t(Γ) ⊢2 t(φ).

Now, the conservative translations, that characterize a subclass of translations, intro-
duced and investigated by Feitosa and D’Ottaviano (see [12] and [14]).

Definition 13. For two logics L1 and L2, a conservative translation from L1 into L2 is a
function t : L1 → L2 such that, for every set X ∪ {x} ⊆ L1:

x ∈ C1(X) ⇔ t(x) ∈ C2(t(X)).

Definition 14. A conservative mapping from the logic L1 into the logic L2 is a function
t : L1 → L2 such that, for every x ∈ L1:

x ∈ C1(∅) ⇔ t(x) ∈ C2(∅).

In terms of the logical systems, given L1 and L2, a conservative translation is a func-
tion t : For(L1) → For(L2) such that, for every subset Γ ∪ {φ} ⊆ For(L1):

Γ ⊢1 φ⇔ t(Γ) ⊢2 t(φ).

In order to show that every valid formula of PM4N is also valid in J3, we will consider
L1 = PM4N, L2 = J3 and t as the identity function ι.

Proposition 3. The function ι is a translation from PM4N into J3.

Proof. We will show that for every Γ ∪ {φ} ⊆ For(PM4N), if ι(Γ) ⊭ ι(φ), then Γ ⊭ φ.
We take J3 in the original language L = {∼,♢,∨} (it is not central).
For any formula of PM4N, it can be written in the same language with the definitions

of new operators from Section 2.
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As the function ι is the identity, then exactly the same formula will be tested in J3.
If ι(Γ) ⊭ ι(φ), then Γ ⊭ φ and there is a J3-valuation e such that e(Γ) ⊆ D and

e(φ) = 0.
As we have used only the values {0, b, 1} and the operations of Γ∪ {φ} share exactly

the same values, then we have that Γ ⊭ φ in PM4N.

So we have that every valid formula of PM4N is also valid in J3, and the axiom (A12)
of J3 is not valid in PM4N. This way there are more theses in the three-valued logic.

5 Final considerations

The aim of this paper was to understand and correlate the modal and 4-valued logic
PM4N with other modal logics. As we were interested in the modal laws, we compared
PM4N with the modal system S5. Additionally, we related the system PM4N with the
paraconsistent logic J3.

We also exposed the inclusion of theorems of S5 into the class of valid formulas of
PM4N. Futhermore, we showed that every theorem of PM4N is also a theorem of the
paraconsistent logic J3.

In a next article, we will try to relate the modal operators of PM4N as a pair of Galois.
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