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Abstract. In the work [11], Vieira introduced a new perspective about continuity of func-

tions, which involves the idea of a suitable type of continuity of a function with respect

to another function. The inspiration for this notion of generalized continuity arises natu-

rally from the concept of generalized limit of a function with respect to another function,

thus expanding the field of mathematical knowledge about continuity of functions. Initially

presented by Vieira and Braz in [1], the concept of generalized limit is relevant, since a Rie-

mann integral is a case of a generalized limit, as can be seen in [11]. This article proposes

to further explore this notion of generalized continuity and its main focus is to investigate

and present operational properties that arise when we deal with functions that exhibit this

generalized continuity, operational properties such as composition, concatenation, among

others. Through this study, it is hoped to shed light on the meaning and implications of

these properties in this context of generalized continuity, allowing a broader understanding

of this notion of continuity.
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Resumo. No trabalho [11], Vieira introduziu uma nova perspectiva sobre continuidade de

funções, a qual envolve a ideia de um tipo apropriado de continuidade de uma função com

respeito a outra função. A inspiração para essa noção de continuidade generalizada surge

naturalmente do conceito de limite generalizado de uma função com respeito a outra função,

expandindo assim o campo do conhecimento matemático sobre continuidade de funções.

Apresentado inicialmente por Vieira e Braz em [1], o conceito de limite generalizado possui

relevância, uma vez que uma integral de Riemann é um caso de limite generalizado, como

pode ser visto em [11]. Este artigo se propõe a explorar mais essa noção de continuidade

generalizada e o foco principal dele é investigar e apresentar propriedades operacionais

que surgem quando lidamos com funções que exibem essa continuidade generalizada, pro-

priedades operacionais tais como composição, concatenação, entre outras. Através deste

estudo, espera-se lançar luz sobre o significado e as implicações dessas propriedades neste

contexto de continuidade generalizada, permitindo uma compreensão mais ampla sobre esta

noção de continuidade.

Palavras-chave. Continuidade generalizada. Continuador. Continuante.

Mathematics Subject Classification (MSC): primary 54C08; secondary 54C10, 54D05,

54D30, 93C30.

1 Introduction

In [11], Vieira introduced the notion of generalized continuity of a function with re-

spect to another function based on the concept of generalized limit. One of the moti-

vations for introducing the concept of a generalized limit of a function with respect to

another function is that a Riemann integral of a function f on an interval [a, b] is properly

defined as a generalized limit. More precisely, it is defined as a generalized limit of the

function given by the Riemann sum of f with respect the function given by the partition

norm of [a, b]. Furthermore, the concept of a generalized limit in fact generalizes the con-

cept of a usual limit of a function, since a usual limit of a function f with domain X is a

generalized limit of the function f with respect to the identity function defined in X .

The term generalized continuity has been approached and studied more frequently

in the mathematical literature in recent decades. Császár in 2002 introduced the notion

of generalized topology in [2], which differs from the notion of topology for lacking the

property about finite intersection of open sets. From this notion many types of generalized

continuity can be defined in these generalized topological spaces, for example, (g, g′)-

continuity [2], θ(g, g′)-continuity [2] and gm-continuity [12]. In the year 2000, Popa

and Noiri introduced in [10] the concept of minimal structure and from that concept they

introduced a version of generalized continuity called m-continuous functions [9, 10].

Braz. Elect. J. Math., Ituiutaba, v.4, jan/dez 2023, p. 1 - 20. 2



Operational properties involving functions with generalized continuity

The generalized continuities defined from the notions given by Császár, Popa and

Noiri, do not coincide with the generalized continuity introduced by Vieira. The functions

with continuities based on the notions given by the three authors above have domains and

codomains with more general structures than topologies (such as generalized topologies

or minimal structures) and have continuity rules defined from the opens of these struc-

tures. On the other hand, the notion of continuity addressed by Vieira does not require

topological structures in the domains of the functions, only in their codomains and yet

such continuity is relative to another function called continuator. Another notion of gen-

eralized continuity present in scientific works, and distinct from the notion approached by

Vieira, is the continuity presented by Kupka ([4], [5], [6] and [7]), as can be seen in [11].

Considering the concept of generalized continuity introduced by Vieira, the authors of

this article asked whether classical properties of compositions, concatenations and other

properties involving continuous functions would have similar versions in this context of

generalized continuity. This article aims to present some operational properties for func-

tions that have generalized continuity in the sense given by Vieira, similar to those prop-

erties involving continuous functions in the usual sense.

2 Preliminaries

In this article, the notation P(X) indicates the collection of all subsets of the set X.

The notation (X, T X) indicates that the set X is equipped with the topology T X , that is,

it denotes a topological space. Considering a topological space (X, T X) and a subset A

of X , the set

T X
A = {U ∈ T X : A ⊂ U}

denotes the collection of all open sets of the topological space (X, T X) that contains A.

If A = {a}, then the collection T X
A is simply denoted by T X

a . The set of all functions

from a set A to a topological space (B, T B) is denoted by F(A, (B, T B)) or simply by

F(A,B), when it is clear which topology is adopted in the codomain B.

Definition 1. [11, p. 86] Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and a ∈ X . The function f

is said to be n-continuous at a if for every U ∈ T Y
f(a), there exists a V ∈ T Z

n(a) such that

f(n−1(V )) ⊂ U . (1)

A function f that is n-continuous at a can also be called a continuant of n at a and the

function n is called a continuator of f at a. Fixing a function n : X → (Z, T Z), a point
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a ∈ X and a topological space (Y, T Y ), the set

Cn(a,X, Y ) = {f ∈ F(X, (Y, T Y )) : f is n-continuous at a} (2)

represents the set of all continuants of n at a with respect to X and (Y, T Y ). An element

of the set

Cn(X, Y ) =
⋂

a∈X

Cn(a,X, Y ) (3)

is an n-continuous function at all points in X . The set Cn(X, Y ) represents the set of

all continuants of n with respect to X and (Y, T Y ). On the other hand, fixing a function

f : X → (Y, T Y ), a point a ∈ X and a topological space (Z, T Z), the set

C
f(a,X, Z) = {n ∈ F(X, (Z, T Z)) : f ∈ Cn(a,X, Y )} (4)

represents the set of all continuators of f at a with respect to X and (Z, T Z). The set

C
f(X,Z) =

⋂

a∈X

C
f(a,X, Z) = {n ∈ F(X, (Z, T Z)) : f ∈ Cn(X, Y )} (5)

represents the set of all continuators of f with respect to X and (Y, T Y ).

It can be noted that in (2), (3), (4) and (5) the topologies in the codomains of the

functions are omitted in the notations of this sets, since this information is clear in the

context.

Example 1. [11, p. 87] Let X be a non-empty set, (Y, T Y ) be a topological space and let

a ∈ X . Every function f : X → (Y, T Y ) is f -continuous at a. In fact, given U ∈ T Y
f(a),

then take V = U and it follows that

f(f−1(V )) = f(f−1(U)) ⊂ U.

Therefore, f is f -continuous at a, that is, f ∈ Cf(a,X, Y ) and f ∈ C
f (a,X, Y ).

Example 2. [11, p. 88] Let (X, T X) and (Y, T Y ) be topological spaces, a ∈ X and

id : X → (X, T X) be the identity function. A function f : (X, T X) → (Y, T Y ) is contin-

uous at a if, and only if, f : X → (Y, T Y ) is id- continuous at a. In fact, when V ∈ T X
a

is considered, note that f(id−1(V )) = f(V ). Therefore, the condition required in the

classical definition of continuity and the condition (1) are equivalent.

The previous example shows that classical continuity is a particular case of general-

ized continuity, when the adopted continuator is the identity function.

Braz. Elect. J. Math., Ituiutaba, v.4, jan/dez 2023, p. 1 - 20. 4



Operational properties involving functions with generalized continuity

On the other hand, it is possible to characterize generalized continuity by providing

the domain of the continuant with an appropriate topology, as can be checked below. Let

f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let Tn = {n−1(V ) : V ∈ T Z}

be the induced topology by n on X . The function f : X → (Y, T Y ) is n-continuous if,

and only if, the function f : (X, Tn) → (Y, T Y ) is continuous in the usual sense.

An important aspect to highlight is that the continuity generalized in the sense intro-

duced by Vieira does not require the provision of the domain of the continuant with a

topology. In addition, the definition 1 of generalized continuity adopted in this article

arises naturally from the concept of generalized limit, which has theoretical relevance.

For example, a Riemann integral is a generalized limit, as can be seen at [11]. For these

reasons, the authors of this work prefer to address generalized continuity as defined in 1.

Example 3. [11, p. 88] Let R be equipped with the usual topology, a be a real number

greater than 0 and let id : R → R be the identity function and m : R → R the function

given by m(x) = |x|. For every open subset V of R containing m(a) = a, consider

V + = V ∩ [0,∞) and V − = {x ∈ R : − x ∈ V +}. Note that m−1(V ) = V + ∪ V −.

Considering the open subset U = (0,∞) of R containing id(a) = a, it results that for

every open subset V of R containing m(a) = a is valid that

id(m−1(V )) = id(V + ∪ V −) = V + ∪ V − 6⊂ (0,∞) = U.

Therefore, id is not m-continuous at a, that is, id /∈ Cm(a,R,R) and m /∈ C
id(a,R,R).

Proposition 1. [11, p. 86] Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and a ∈ X . The following

statements hold true:

(i) If f is constant function, then f ∈ Cn(a,X, Y ).

(ii) If n is constant function and f ∈ Cn(a,X, Y ), then f(X) ⊂ U , for all U ∈ T Y
f(a).

Theorem 1. [11, p. 96] Let X be a non-empty set, (Y, T Y ), (Z, T Z) and (R, T R) be

topological spaces, f : X → (Y, T Y ), m : X → (Z, T Z) and n : X → (R, T R) be

functions and a ∈ X . If f ∈ Cm(a,X, Y ) and m ∈ Cn(a,X, Z), then f ∈ Cn(a,X, Y ).

Definition 2. [11, p. 89] Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and a ∈ X . The function f

is said to be widely n- continuous at a if for every U ∈ T Y
f(a), there exists V ∈ T Z

n(a) such

that

V ∩ n(X) ⊂ n(f−1(U)) . (6)
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A function f that is widely n-continuous at a can also be called a wide continuant

of n at a and the function n is called a wide continuator of f at a. Fixing a function

n : X → (Z, T Z), a point a ∈ X and a topological space (Y, T Y ), the set

Wn(a,X, Y ) = {f ∈ F(X, (Y, T Y )) : f is widely n-continuous at a} (7)

represents the set of all continuants of n at a with respect to X and (Y, T Y ). An element

of the set

Wn(X, Y ) =
⋂

a∈X

Wn(a,X, Y ) (8)

is a widely n-continuous function at all points in X . The set Wn(X, Y ) represents the set

of all wide continuants of n with respect to X and (Y, T Y ). On the other hand, fixing a

function f : X → (Y, T Y ), a point a ∈ X and a topological space (Z, T Z), the set

W
f(a,X, Z) = {n ∈ F(X, (Z, T Z)) : f ∈ Wn(a,X, Y )} (9)

represents the set of all wide continuators of f at a with respect to X and (Z, T Z). The

set

W
f(X,Z) =

⋂

a∈X

W
f(a,X, Z) (10)

represents the set of all wide continuators of f with respect to X and (Y, T Y ).

Example 4. [11, p. 90] Let X be a non-empty set, (Y, T Y ) be topological space and

a ∈ X . Every function f : X → (Y, T Y ) is widely f -continuous at a. In fact, given

U ∈ T Y
f(a), then take V = U and it follows that

V ∩ f(X) = U ∩ f(X) = f
(

f−1(U) ∩X
)

= f
(

f−1(U)
)

.

Therefore, f is widely f -continuous at a, that is, f ∈ Wf(a,X, Y ) and f ∈ W
f(a,X, Y ).

Example 5. [11, p. 90] Let R be equipped with usual topology, a be a real number greater

than 0, id : R → R be the identity function and m : R → R be the function given by

m(x) = |x|. Given U a open subset of R containing id(a) = a, then V = U ∩ (0,∞) is

an open subset of R containing m(a) = a and V ⊂ m(U). Thus, it is valid that

V ∩m(R) = V ∩ [0,∞) = V ⊂ m(U) = m
(

id−1(U)
)

.

Hence, id is widely m-continuous at a, that is, id ∈ Wm(a,R,R) and m ∈ W
id(a,R,R).

Theorem 2. [11, p. 91] Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological
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spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and a ∈ X . If f is n-

continuous at a, then f is widely n-continuous at a.

Corollary 1. [11, p. 92] Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and a ∈ X . If f is a

constant function, then f ∈ Wn(a,X, Y ).

Consider X a non-empty set, (Y, T Y ) a topological space and n : X → (Z, T Z) a

continuator, then T n(X) denotes the induced topology by T Z on n(X).

Theorem 3. [11, p. 96] Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions. The function f is widely

n-continuous if, and only if, n(f−1(U)) ∈ T n(X), for all U ∈ T Y .

3 Generalized continuity equivalences

This section aims to present some additional results about generalized continuity. In

this article, given a topological space (X, T X) and a ∈ X , a subset U of X is said to be a

neighborhood of a if this point belongs to the interior of U , that is, a ∈ U◦. The symbol

VX
a denotes the collection of all neighborhoods of a with respect to T X . A subcollection

BX
a of VX

a (i.e., BX
a ⊂ VX

a ) is a basis of neighborhoods of a with respect to T X if, and

only if, for each U ∈ VX
a , there exists W ∈ BX

a such that W ⊂ U . It is easily verified

that if BX
a is a basis of neighborhoods of a with respect to T X and U, V ∈ BX

a , then there

exists W ∈ BX
a such that W ⊂ U ∩ V .

Proposition 2. Let X be a non-empty set, a ∈ X , (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions, BY
f(a) be a basis neighbor-

hoods of f(a) with respect to T Y and BZ
n(a) be a basis neighborhoods of n(a) with respect

to T Z . The following statements are equivalent:

(i) f ∈ Cn(a,X, Y ).

(ii) For every U ∈ VY
f(a), there exists V ∈ VZ

n(a) such that f(n−1(V )) ⊂ U .

(iii) For every U ∈ BY
f(a), there exists V ∈ BZ

n(a) such that f(n−1(V )) ⊂ U .

Proof. (i) ⇒ (ii) If U ∈ VY
f(a), then f(a) ∈ U◦. As U◦ ∈ T Y

f(a), then there exists

V1 ∈ T Z
n(a) such that f(n−1(V1)) ⊂ U◦. Take V = V1, which implies that V ∈ V Z

n(a) and

it is obtained that

f(n−1(V )) ⊂ U◦ ⊂ U.
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(ii) ⇒ (iii) Let U ∈ BY
f(a). As U ∈ VY

f(a), then by hypothesis there exists V1 ∈ VZ
n(a)

such that f(n−1(V1)) ⊂ U . As V1 ∈ VZ
n(a), then by definition of neighborhood basis of

the point n(a), exists V ∈ BZ
n(a) such that V ⊂ V1. Therefore,

f(n−1(V )) ⊂ f(n−1(V1)) ⊂ U.

(iii) ⇒ (i) If U ∈ T Y
f(a), then U ∈ VY

f(a) and therefore there exists W ∈ BY
f(a) such that

W ⊂ U . By hypothesis there exists V1 ∈ BZ
n(a) such that f(n−1(V1)) ⊂ W ⊂ U . Take

V = V ◦
1 ∈ T Z

n(a). As V ⊂ V1 it follows that

f(n−1(V )) ⊂ f(n−1(V1)) ⊂ W ⊂ U.

Proposition 3. Let X be a non-empty set, a ∈ X , (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions, BY
f(a) be a basis neighbor-

hoods of f(a) with respect to T Y and BZ
n(a) be a basis neighborhoods of n(a) with respect

to T Z . The following statements are equivalent:

(i) f ∈ Wn(a,X, Y ).

(ii) For every U ∈ VY
f(a), there exists V ∈ VZ

n(a) such that V ∩ n(X) ⊂ n(f−1(U)).

(iii) For every U ∈ BY
f(a), there exists V ∈ BZ

n(a) such that V ∩ n(X) ⊂ n(f−1(U)).

Proof. (i) ⇒ (ii) If U ∈ VY
f(a), then f(a) ∈ U◦ and U◦ ∈ T Y

f(a). By hypothesis, for U◦

there exists W ∈ T Z
n(a) such that

W ∩ n(X) ⊂ n(f−1(U◦)) ⊂ n(f−1(U)).

As n(a) ∈ W and W = W ◦, then W ∈ VZ
n(a). Take V = W . It follows that

V ∩ n(X) ⊂ n(f−1(U)).

(ii) ⇒ (iii) If U ∈ BY
f(a), then U ∈ VY

f(a). By hypothesis, for U there exists W ∈ VZ
n(a)

such that W ∩ n(X) ⊂ n(f−1(U)). As W ∈ VZ
n(a), then there exists V ∈ BZ

n(a) such that

V ⊂ W . Therefore, V ∈ BZ
n(a) satisfies

V ∩ n(X) ⊂ W ∩ n(X) ⊂ n(f−1(U)).

(iii) ⇒ (i) If U ∈ T Y
f(a), then U ∈ VY

f(a). Hence, there exists W1 ∈ BY
f(a) such that

W1 ⊂ U . By hypothesis, there exists W2 ∈ BZ
n(a) such that W2 ∩ n(X) ⊂ n(f−1(W1)).
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Take V = W ◦
2 ∈ T Z

n(a). It follows that

V ∩ n(X) = W ◦

2 ∩ n(X) ⊂ W2 ∩ n(X) ⊂ n(f−1(W1)) ⊂ n(f−1(U)).

Proposition 4. Let X be a non-empty set, (Y, T Y ) and (Z, T Z) be topological spaces,

n : X → (Z, T Z) be an injective function, FY be the collection of all closed sets with

respect to T Y and Fn(X) be the collection of all closed sets with respect to T n(X). It holds

that f ∈ Wn(X, Y ) if, and only if, n (f−1(F )) ∈ Fn(X), for all F ∈ FY

Proof. Let F ∈ FY , then Y − F ∈ T Y . As f ∈ Wn(X, Y ), it follows from Theorem 3

that n (f−1(Y − F )) ∈ T n(X). Note that since n is injective, it follows that n (f−1(Y ))−

n (f−1(F )) = n (f−1(Y )− f−1(F )). As n(X) = n (f−1(Y )), then

n (X)− n
(

f−1(F )
)

= n
(

f−1(Y )− f−1(F )
)

= n
(

f−1(Y − F )
)

. (11)

Therefore, n (f−1(F )) ∈ Fn(X).

Conversely, let U ∈ T Y , then Y −U ∈ FY . By hypothesis n (f−1(Y − U)) ∈ Fn(X) and

n is injective, so it follows similarly to (11) that n(X)− n (f−1(U)) ∈ Fn(X). Therefore,

n (f−1(U)) ∈ T n(X) and it follows from Theorem 3 that f ∈ Wn(X, Y ).

Let (X, T X) be a topological space. A subcollection B of T X (i.e., B ⊂ T X) is a

basis of the topology T X if given U ∈ T X , there exists C ⊂ B such that

U =
⋃

V ∈C

V .

An element of a basis B of T X is called basic open with respect to T X and the set

Ba = {U ∈ B : a ∈ U}

denotes the collection of all basic opens around the point a ∈ X . It is easy to verify that

Ba is a basis of neighborhoods for a with respect to T X .

Example 6. The set R = {(a, b) : a, b ∈ R} is a basis of the usual topology T R on R.

Already a subcollection S of T X (i.e., S ⊂ T X )is a subbasis of the topology T X

if given U ∈ T X , there exists an index set Λ and for each λ ∈ Λ, there exists a finite

subcolletion Cλ ⊂ S such that

U =
⋃

λ∈Λ

(

⋂

V ∈Cλ

V

)

.
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In other words, S is a subbasis of the topology T X if given an open U ∈ T X , it is written

as an arbitrary union of finite intersections of members of S. An element of a subbasis S

of T X is called a subbasic open subset with respect to T X and the set

Sa = {U ∈ S : a ∈ U}

denotes the collection of all subbasic open subsets around the point a ∈ X . Note that

every basis of a topology is also a subbasis.

Example 7. The set S = {(a,∞) : a ∈ R}∪{(−∞, b) : b ∈ R} is a subbasis of the usual

topology T R on R.

Let Y be a non-empty set and R be a collection of subsets of Y . Consider the follow-

ing collections of subsets of Y given by

[R] = {U ∈ P(Y ) : U =
n
⋂

i=1

Vi for some n ∈ N and each Vi ∈ R} (12)

and

〈R〉 = {U ∈ P(Y ) : U =
⋃

V ∈D

V for some D ⊂ R} . (13)

It is known that if Y =
⋃

V ∈R

V , then the collection 〈[R]〉 is a topology on Y called topology

generated by R and it is denoted by 〈[R]〉. Furthermore, the collection [R] is a basis of the

topology 〈[R]〉 called basis generated by R or generator basis of 〈[R]〉 and R is a subbasis

of the topology 〈[R]〉 called generator subbasis of 〈[R]〉. In the case that (X, T X) is a

topological space and S is a subbasis of T X , then 〈[S]〉 = T X . Furthermore, if a ∈ X ,

then [S]a is a basis of neighborhoods for a with respect to T X .

Theorem 4. Let X be a non-empty set, a ∈ X , (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions, R be a subbasis of T Y and

S be a subbasis of T Z . If for every subbasic open U ∈ Rf(a), there exists a subbasic open

V ∈ Sn(a) such that f(n−1(V )) ⊂ U , then f is n-continuous at a.

Proof. Let U ∈ [R]f(a). Since R is subbasis of T Y , then there are k ∈ N and Ui ∈

R, with i = 1, . . . , k, such that U =
k
⋂

i=1

Ui. By hypothesis, it follows that for each

Ui ∈ Rf(a), with i = 1, . . . , k, there exists a subbasic open subset Vi ∈ Sn(a) such that
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f(n−1(Vi)) ⊂ Ui. Considering V =
k
⋂

i=1

Vi, then V ∈ [S]n(a) and

f(n−1(V )) ⊂ f(n−1(
k
⋂

i=1

Vi)) ⊂
k
⋂

i=1

f(n−1(Vi)) ⊂
k
⋂

i=1

Ui = U .

Therefore, it follows from Proposition 2 that f is n-continuous in a.

Corollary 2. Let X be a non-empty set, a ∈ X , (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions, R be a subbasis of T Y

and B be a basis of T Z . If for every subbasic open U ∈ Rf(a), there exists a basic open

V ∈ Bn(a) such that f(n−1(V )) ⊂ U , then f is n-continuous at a.

Proof. Since every basis of a topology is a subbasis, the corollary follows immediately

from the Theorem 4.

The reciprocal of Theorem 4 is not true. Let R = {(a, b) : a, b ∈ R} T R and S =

{(c,∞) : c ∈ R} ∪ {(−∞, d) : d ∈ R} be subbasies of T R. Consider the functions

f : (R, T R) → (R, 〈[R]〉) and n : (R, T R) → (R, 〈[S]〉) given by f(x) = n(x) = |x|. As

seen in the Example 1, f is n-continuous. However, it is verified that for x ∈ R−{0} the

subbasic open (0, 2|x|) ∈ Rf(x) is such that f(n−1(V )) * (0, 2|x|), for all subbasic open

V ∈ Sn(x). In fact, the subbasics open around n(x) are of the form (c,∞), with c < n(x),

or (−∞, d), with 0 < n(x) < d, and in both cases it follows that

f(n−1((c,∞))) = f((−∞,−c) ∪ (c,∞)) =







(|c|,∞) * (0, 2|x|) , if c ≥ 0

[0,∞) * (0, 2|x|) , if c < 0

and

f(n−1((−∞, d)) = f((−d, d)) = [0, d] * (0, 2|x|) .

However, the reciprocal of Corollary 2 is true, as can be seen in the following theorem.

Theorem 5. Let X be a non-empty set, a ∈ X , (Y, T Y ) and (Z, T Z) be topological

spaces, f : X → (Y, T Y ) and n : X → (Z, T Z) be functions, R be a subbasis of T Y and

B be a basis of T Z . A function f is n-continuous at a if and only if for every subbasic

open U ∈ Rf(a), there exists a basic open V ∈ Bn(a) such that f(n−1(V )) ⊂ U .

Proof. Let U ∈ Rf(a). Since U ∈ T Y
f(a) and by hypothesis f is n- continuous, then there

exists W ∈ T Z
n(a) such that f(n−1(W )) ⊂ U . Since W ∈ T Z

n(a) and B is a basis of T Z ,

then there exists C ⊂ B such that W =
⋃

B∈C

B. If n(a) ∈ W =
⋃

B∈C

B, then n(a) ∈ B0,
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for some B0 ∈ C. Taking V = B0, then

f(n−1(V )) ⊂ f(n−1(W )) ⊂ U.

The reciprocal was proved in the Corollary 2.

4 Generalized compact-open topology

Let X be a non-empty set, (Y, T Y ), (Z, T Z) be topological spaces and consider

n : X → (Z, T Z) a continuator. The intention is to build a topology to equip the set

Cn(X, Y ) of all n-continuous functions from X in (Y, T Y ). For this, let K be a subset of

n(X), U be a subset of Y and consider

(K,U)Yn = {f ∈ Cn(X, Y ) : f(n−1(K)) ⊂ U} , (14)

which is simply denoted by (K,U)n, since that U is understood in the context as a subset

of Y . Consider the family of subsets of n(X) given by

Kn = {K ∈ P(n(X)) : K is compact with respect to the topology T n(X)}.

Consider also the family of subsets of Cn(X, Y ) given by

Sn-co = {(K,U)n ∈ P(Cn(X, Y )) : K ∈ Kn and U ∈ T Y }. (15)

Proposition 5. The family Sn-co given in (15) is a generator subbasis of a topology on

Cn(X, Y ).

Proof. Note that Cn(X, Y ) = (∅, Y )n and (∅, Y )n ∈ Sn-co, since ∅ is compact in n(X)

and Y ∈ T Y . The inclusion (K,U)n ⊂ Cn(X, Y ) follows from the equation (14), for all

(K,U)n ∈ Sn−co. On the other hand, (∅, Y )n ⊂
⋃

(K,U)n∈Sn-co

(K,U)n. It follows that,

Cn(X, Y ) =
⋃

(K,U)n∈Sn-co

(K,U)n.

Therefore, the family Sn-co is a generator subbasis of a topology on Cn(X, Y ).

The topology 〈[Sn-co]〉 generated by the generator subbasis Sn-co is called n-compact-

open topology on Cn(X, Y ) and it is denoted by Tn-co.
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Let (X, T X) and (Y, T Y ) be topological spaces and consider a collection given by

B = {U × V ∈ P(X × Y ) : U ∈ T X and V ∈ T Y }.

The topology 〈B〉 generated by the generator basis B is called product topology on X×Y

(with respect to T X and T Y ) and it is denoted by T X ⊗ T Y .

Let (X, T X) and (Y, T Y ) be topological spaces and consider (Cn(X, Y ), Tn-co). The

function εn : (X × Cn(X, Y ), T X ⊗ Tn-co) → (Y, T Y ) given by

εn(x, f) = f(x)

is called the evaluation function.

Theorem 6. Let (X, T X), (Y, T Y ) and (Z, T Z) be topological spaces. Consider n : (X, T X) →

(Z, T Z) a function and εn : (X×Cn(X, Y ), T X ⊗Tn-co) → (Y, T Y ) the evaluation func-

tion. If n is injective, continuous and n(X) is Hausdorff locally compact, then εn is

continuous, that is, εn ∈ Cid(X × Cn(X, Y ), Y ).

Proof. For this proof the item (ii) of Proposition 2 will be checked. Let a ∈ X , f ∈

Cn(X, Y ) and W ∈ VY
f(a). Note that W ◦ ∈ T Y

f(a). Since f ∈ Cn(X, Y ), it follows from

Theorem 2 that f ∈ Wn(X, Y ) and it follows from Theorem 3 that

n(f−1(W ◦)) ∈ T
n(X)
n(a) .

Since n(X) is Hausdorff locally compact, it follows that (see [8], page 211) there exists a

neighborhood V of n(a) such that its closure V̄ is compact and

n(a) ∈ V ⊂ V̄ ⊂ n(f−1(W ◦)).

As n is injective, then n−1(n(f−1(W ◦))) = f−1(W ◦) and the subbasic open (V̄ ,W ◦)n
contains f . In fact,

V̄ ⊂ n(f−1(W ◦)) ⇒ n−1(V̄ ) ⊂ n−1(n(f−1(W ◦))) = f−1(W ◦)

⇒ f(n−1(V̄ )) ⊂ f(f−1(W ◦)) ⊂ W ◦

⇒ f ∈ (V̄ ,W ◦)n .

Since n is continuous, then n−1(V ) is a neighborhood of a. Hence n−1(V ) × (V̄ ,W ◦)n
is a neighborhood of (a, f) and

εn(n
−1(V )× (V̄ ,W ◦)n) ⊂ W.
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In fact, if (a, f) ∈ n−1(V )× (V̄ ,W ◦)n, then

εn(a, f) = f(a) ∈ f(n−1(V )) ⊂ f(n−1(V̄ )) ⊂ W ◦ ⊂ W .

Therefore, εn ∈ Cid(X × Cn(X, Y ), Y ).

5 Collage of functions with generalized continuity

Let (Y, T Y ) be a topological space, X be non-empty set, A and B be non-empty

subsets of X such that X = A∪B and f : A → Y and g : B → Y be functions such that

f(x) = g(x), for all x ∈ A ∩B. Consider the function (f ∗ g) : X → (Y, T Y ) given by

(f ∗ g)(x) =

{

f(x), if x ∈ A

g(x), if x ∈ B
.

The function (f ∗ g) is called the concatenation of f with g and it is also called collage

function of f and g.

Note that (f ∗ g)−1(V ) = f−1(V ) ∪ g−1(V ). In fact, if x ∈ (f ∗ g)−1(V ), that means

(f ∗ g)(x) ∈ V . From the definition of (f ∗ g), then f(x) ∈ V or g(x) ∈ V , hence

x ∈ f−1(V ) or x ∈ g−1(V ), consequently, x ∈ f−1(V ) ∪ g−1(V ). On the other hand, if

x ∈ f−1(V ) ∪ g−1(V ), then x ∈ f−1(V ) or x ∈ g−1(V ), that means that f(x) ∈ V or

g(x) ∈ V and by the definition of the collage function its follows that (f ∗ g)(x) ∈ V and

therefore x ∈ (f ∗ g)−1(V ).

See an example in which two functions with generalized continuity have concatena-

tion that is not continuous with respect to the concatenation of their continuators. Let

f, p : ((−∞, 0), T (−∞,0)) → (R, T R) be functions given by f(x) = x and p(x) = −x.

Also consider g, q : ([0,∞), T [0,∞) → (R, T R) given by g(x) = q(x) = x. Note that

f ∈ Cp((−∞, 0),R). Consider x0 ∈ (−∞, 0) and U ∈ T R
f(x0)

. Since f(x0) = x0, taking

W = U ∩ (−∞, 0), then W ∈ T
(−∞,0)
x0

and V = p(W ) ∈ T R
p(x0)

. Since p is injective, it

follows that

f(p−1(V )) = f(p−1(p(W ))) = f(W ) = W ⊂ U .

Therefore, f ∈ Cp((−∞, 0),R). As g = q, it follows that g ∈ Cq([0,∞],R). Note that

f ∗ g = id and p ∗ q = m, being m the modulo function. It follows from (3) that the

identity function is not m-continuous, that is, (f ∗ g) 6∈ C(p∗q)(R,R).

The proposition below gives us the condition for the concatenation to have widely

continuity with respect to the concatenation of continuators and consequently have con-

catenation of n-continuous functions.
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Theorem 7. Let (Y, T Y ) and (Z, T Z) be topological spaces, X , A and B be non-empty

sets such that X = A ∪ B and p : A → (Z, T Z) and q : B → (Z, T Z) be functions.

Consider f ∈ Wp(A, Y ), g ∈ Wq(B, Y ), f(x) = g(x) and p(x) = q(x), for all x ∈ A∩B.

The following statements hold true:

(i) If p(A), q(B) ∈ T Z , then (f ∗ g) ∈ Wp∗q(X, Y ).

(ii) If p and q are injective functions and p(A), q(B) ∈ FZ , then (f ∗ g) ∈ Wp∗q(X, Y ).

Proof. (i) Let V ∈ T Y . As f ∈ Wp(A, Y ) and g ∈ Wq(B, Y ), it follows from Theorem

3 that

p(f−1(V )) ∈ T p(A) e q(g−1(V )) ∈ T q(B) (16)

Now, notice that

(p ∗ q)((f ∗ g)−1(V )) = (p ∗ q)((f−1(V ) ∪ g−1(V ))

= (p ∗ q)(f−1(V )) ∪ (p ∗ q)(g−1(V ))

= p(f−1(V )) ∪ q(g−1(V )).

As (p ∗ q)(X) = p(A) ∪ q(B), p(f−1(V )) ∈ T p(A) e q(g−1(V )) ∈ T q(B), it follows that

(p∗ q)((f ∗g)−1(V )) ∈ T (p∗q)(X). In fact, as p(f−1(V )) ∈ T p(A) and q(g−1(V )) ∈ T q(B),

then p(f−1(V )) = W1 ∩ p(A) and q(g−1(V )) = W2 ∩ q(B) with W1,W2 ∈ T Z , this way

p(f−1(V )) ∪ q(g−1(V )) = (W1 ∩ p(A)) ∪ (W2 ∩ q(B))

= (W1 ∪W2) ∩ (W1 ∪ q(B)) ∩ (p(A) ∪W2) ∩ (p(A) ∪ q(B))

= (W1 ∪W2) ∩ (W1 ∪ q(B)) ∩ (p(A) ∪W2) ∩ (p ∗ q)(X).

As (W1∪W2)∩(W1∪q(B))∩(p(A)∪W2) ∈ T Z , then p(f−1(V ))∪q(g−1(V )) ∈ T (p∗q)(X).

Therefore, (f ∗ g) ∈ Wp∗q(X, Y ).

(ii) Let F ∈ FY . As p and q are injective functions and f ∈ Wp(A, Y ) and g ∈ Wq(B, Y ),

it follows from Proposition 4 that p(f−1(F )) ∈ Fp(A) and q(g−1(F )) ∈ F q(B). Note that

(p ∗ q)((f ∗ g)−1(F )) = p(f−1(F )) ∪ q(g−1(F ))

As (p ∗ q)(X) = p(A) ∪ q(B), p(f−1(F )) ∈ Fp(A) e q(g−1(F )) ∈ F q(B), it follows

that (p ∗ q)((f ∗ g)−1(F )) ∈ F (p∗q)(X). To verify this, the procedure is similar to the one

performed in part (i).

Therefore, (f ∗ g) ∈ Wp∗q(X, Y ).
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Let A,B,C,D be non-empty sets, f : A → C and g : B → D be functions. The

cartesian function between f and g is the function f × g : A× B → C ×D given by

(f × g)(x, t) = (f(x), g(t)). (17)

Theorem 8. Let X1, X2 be non empty sets, (Y1, T
Y1), (Y2, T

Y2), (Z1, T
Z1), (Z2, T

Z2) be

topological spaces and n : X1 → (Z1, T
Z1) and m : X2 → (Z2, T

Z2) be functions. If

f ∈ Cn(X1, Y1) and g ∈ Cm(X2, Y2), then f × g ∈ Cn×m(X1 ×X2, Y1 × Y2).

Proof. Let a = (a1, a2) ∈ X1×X2. Consider U ∈ BY1×Y2

(f×g)(a). It follows that U = U1×U2,

with U1 ∈ T Y1

f(a1)
and U2 ∈ T Y2

g(a2)
. As f é n-continuous at a1, for this U1 ∈ T Y1

f(a1)
there

exists V1 ∈ T Z1

n(a1)
such that

f(n−1(V1)) ⊂ U1. (18)

As g is m-continuous at a2, for this U2 ∈ T Y2

g(a2)
there exists V2 ∈ T Z2

m(a2)
such that

g(m−1(V2)) ⊂ U2. (19)

Take V = V1 × V2 ∈ BZ1×Z2

(n(a1),m(a2))
. This way

(n×m)−1(V ) = (n×m)−1(V1 × V2) = n−1(V1)×m−1(V2)

and this implies that

(f × g)((n×m)−1(V1 × V2)) = (f × g)(n−1(V1)×m−1(V2))

= f(n−1(V1))× g(m−1(V2))

⊂ U1 × U2

= U .

Therefore, f × g ∈ Cn×m(X1 ×X2, Y1 × Y2).

6 Composition of functions with generalized continuity

Now we will present results on how compositions of functions with generalized con-

tinuity behave. To facilitate the understanding of the Theorem 9 consider the following

diagram.
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X

(Z, T Z)

(P, T P )

p

(Z, T Z)

idZ

n

(Y, T Y )

(Y, T Y )
idY

(G, T G)
g

f

Theorem 9. Let X be non-empty set, (Y, T Y ), (Z, T Z), (G, T G) and (P, T P ) be topo-

logical spaces, f : X → (Y, T Y ), g : (Y, T Y ) → (G, T G), n : X → (Z, T Z) and

p : (Z, T Z) → (P, T P ) be functions. The following statements are true:

(i) If f ∈ F(X, Y ) and g ∈ Cid(Y,G), then g ◦ f ∈ Cf (X,G)

(ii) If f ∈ Cn(X, Y ) and g ∈ Cid(Y,G), then g ◦ f ∈ Cn(X,G).

(iii) If n ∈ F(X,Z) and id ∈ Cp(Z,Z), then n ∈ Cp◦n(X,Z)

(iv) If f ∈ Cn(X, Y ) and id ∈ Cp(Z,Z), then f ∈ Cp◦n(X, Y )

(v) If f ∈ Cn(X, Y ), g ∈ Cid(Y,G) and id ∈ Cp(Z,Z), then g ◦ f ∈ Cp◦n(X,G)

Proof. (i) Let a ∈ X and U ∈ T G
(g◦f)(a). Since T G

(g◦f)(a) = T G
(g(f(a)) and by hypothesis

g ∈ Cid(Y,G), then exists V ∈ T Y
f(a) such that g(V ) ⊂ U . It follows that

f(f−1(V )) ⊂ V ⇒ g(f(f−1(V ))) ⊂ g(V ) ⇒ (g ◦ f)(f−1(V )) ⊂ U .

Hence, g◦f é f -continuous at a. Since a ∈ X is arbitrary, it follows that g◦f ∈ Cf (X,G).

(ii) If g ∈ Cid(Y,G), it follows from item (i) that g◦f ∈ Cf (X,G). Since g◦f ∈ Cf (X,G)

and by hypothesis f ∈ Cn(X, Y ), it follows from Theorem 1 that g ◦ f ∈ Cn(X,G).

(iii) Let a ∈ X and V ∈ T Z
n(a). If id ∈ Cp(Z,Z), then id is p-continuous at n(a) ∈ Z.

Since V ∈ T Z
n(a) and id is p-continuous at n(a), then exists W ∈ T P

p(n(a)) such that

id(p−1(W )) ⊂ V , that is, p−1(W ) ⊂ V . It follows that

n((p ◦ n)−1(W )) = n(n−1(p−1(W ))) ⊂ n(n−1(V )) ⊂ V .
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Therefore, n é (p ◦ n)-continuous at a. Since a ∈ X is arbitrary, then n ∈ Cp◦n(X,Z).

(iv) By item (iii) above, if id ∈ Cp(Z,Z), then n ∈ Cp◦n(X,Z). Since f ∈ Cn(X, Y ) and

n ∈ Cp◦n(X,Z), it follows from Theorem 1 that f ∈ Cp◦n(X, Y ).

(iv) If f ∈ Cn(X, Y ) and g ∈ Cid(Y,G), it follows from item (ii) that g ◦ f ∈ Cn(X,G).

Since id ∈ Cp(Z,Z), it follows from item (iii) that n ∈ Cp◦n(X,Z). If g ◦ f ∈ Cn(X,G)

and n ∈ Cp◦n(X,Z), it follows from Theorem 1 that g ◦ f ∈ Cp◦n(X,G).

Corollary 3. Let X be non-empty set, (Y, T Y ) and (Z, T Z) be topological spaces, f : X →

(Y, T Y ), g : (Y, T Y ) → (G, T G) be functions. If g ◦ f is not f -continuous, then g is not

continuous.

Proof. It is the contrapositive of item (i) of Theorem 9.

Proposition 6. Let (X, T X), (Y, T Y ) and (Z, T Z) be topological spaces, n : (X, T X) →

(Z, T Z) be a function and idX : (X, T X) → (X, T X) be the identity function. If n is an

open function and a injective function, then idX ∈ Cn(X,X).

Proof. Let a ∈ X and U ∈ T X
a . Take V = n(U). Since n is an open function, then

n(U) ∈ T Z
n(a) and since n is a injective function, then

idX(n
−1(V )) = idX(n

−1(n(U))) = idX(U) = U ⊂ U.

Therefore, idX ∈ Cn(X,X).

Corollary 4. Let X be non empty set, let (G, T G) and (P, T P ) topological spaces, let

n : X → (Z, T Z) and p : (Z, T Z) → (P, T P ) functions. If n not is p ◦n-continuous, then

p not an open function or p not an injective function

Proof. It follows from the contrapositive of item (iii) of Theorem 9, followed by the

contrapositive of Proposition 6.

Let X and T be a non-empty sets and (Z, T Z) be a topological space. Consider the

projection function on the first coordinate π1 : X × T → X and a continuator n : X →

(Z, T Z). Then the function n ◦ π1 : X × T → (Z, T Z) is given by

(n ◦ π1)(x, t) = n(π1(x, t)) = n(x) .

Finally, the next result relates the generalized continuity of a continuant f relative to

a continuator described as a composition of functions with the generalized continuity of

the same continuant f relative to a continuator described as a Cartesian function.
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Theorem 10. Let X be a non-empty set and (T, T T ), (Y, T Y ) and (Z, T Z) be topological

spaces. Let f : X × T → (Y, T Y ), m : T → (T, T T ) and n : X → (Z, T Z) be functions.

If f ∈ Cn◦π1
(X × T, Y ) and m is a surjective function, then f ∈ Cn×m(X × T, Y ).

Proof. Let (a, s) ∈ X × T and U ∈ T Y
f(a,s). Since f is (n ◦ π1)-continuous, then exists

V ∈ T Z
(n◦π1)(a,s)

such that f((n◦π1)
−1(V )) ⊂ U . Consider W = V × m(T ) and note that

W ∈ (T Z ⊗ T T )(n(a),m(s)) and W = V × T , because m is a surjective function. Since

(n ◦ π1)
−1(V ) = {(x, t) ∈ X × T : n(x) ∈ V } = n−1(V )× T ,

it follows that

(n×m)−1(W ) = {(x, t) ∈ X × T, : (n(x), m(t)) ∈ W}

= {(x, t) ∈ X × T : n(x) ∈ V and m(t) ∈ T}

= {(x, t) ∈ X × T : x ∈ n−1(V ) and t ∈ m−1(T )}

= n−1(V )×m−1(T )

= n−1(V )× T

= (n ◦ π1)
−1(V ) .

Then f((n×m)−1(W )) = f((n◦π1)
−1(V )) ⊂ U . Therefore, f ∈ Cn×m(X×T, Y ).

7 Conclusion

Through the additional considerations about generalized continuity present in this ar-

ticle, it is possible to notice that characterizations and propositions about generalized

continuity behave very similar to the usual continuity.

However, there are restrictions to make a composition between two continuants main-

taining generalized continuity relative to the composition of their respective continuants.

There are also restrictions for collage of functions with generalized continuity. More

specifically, if additional conditions are not required for the continuators, then the collage

of two continuants may not have generalized continuity relative to the collage of their

respective continuators.
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