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Abstract. The present work consists of deducing the point kinetics model considering

neutron absorber poisons from the neutron diffusion equation. When considering poisons

products, the non-linear system has different orders of magnitude in short and long time

scales. The first one represents operational reactor control, whereas the second is due to

the change of the chemical composition of the nuclear fuel as a result of burn-up. This

represents a first step in a new direction, as it shows how we arrived at the extension of the

point kinetics model considering Xenon-135 and Samarium-149 poisons. The non-linear

system is solved using the Adomian decomposition method that expands the non-linear

terms into an infinite series, obtaining a recursive system, where the recursion initialization

is a homogeneous linear equation and the subsequent recursion steps consider the non-linear

contributions as source terms constructed from previous recursion steps. The formulation

of the source terms of the decomposition method is shown. In order to demonstrate the

robustness of the current approach to this type of problem, case studies are presented where

nuclear fuel uses reused elements up to third generation, taking a step in a new direction

where poisons are already present in the reactor initially.
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Resumo. O presente trabalho consiste em deduzir o modelo de cinética pontual con-

siderando venenos absorvedores de nêutrons a partir da equação de difusão de nêutrons.

Ao considerar venenos produtos de fissão, o sistema não linear possui diferentes ordens

de grandeza em escalas de tempo curtas e longas. A primeira representa o controle op-

eracional do reator, enquanto a segunda é devido à mudança na composição química do

combustível nuclear como resultado do burn up. É o primeiro passo em uma nova direção,

pois mostra como chegamos à extensão do modelo de cinética pontual considerando os ve-

nenos Xenônio-135 e Samário-149. O sistema não linear é resolvido usando o método da

decomposição de Adomian, o qual expande os termos não lineares em uma série infinita,

obtendo um sistema recursivo, em que a inicialização da recursão é uma equação linear

homogênea e os passos subsequentes da recursão consideram as contribuições não lineares

como termos fonte construídos a partir dos passos anteriores da recursão. A formulação

dos termos fonte do método de decomposição é apresentada. Para demonstrar a robustez

da abordagem atual para esse tipo de problema, são apresentados estudos de caso em que

o combustível nuclear utiliza elementos reutilizados até a terceira geração, dando um passo

em uma nova direção, uma vez que os venenos já estão presentes no reator inicialmente.

Palavras-chave. Difusão de nêutrons. Venenos de nêutrons. Método da decomposição de

Adomian. Cinética de curta e longa escala de tempo. Combustível nuclear reutilizado.
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1 Introduction

Generally, in nuclear reactor control, neutron point kinetics models are applicable. The

traditional point kinetics model is suitable for short-term intervals, while burn-up, which

refers to the effects of poisons from fission products, is convenient for long-term intervals.

Short-term intervals are generally up to 101 seconds, while long-term intervals are of the

order of 104 seconds.

Poisons produced from neutron fission fragments in nuclear reactors are an important

aspect of their operation. These fission fragments generate fission products which, in

turn, are parasitic neutron absorbers, resulting in long-term heat sources [6, 12]. The

most important poisons for reactor operation are Xenon-135 and Samarium-149.

Nuclear fuel can be reused in subsequent cycles. In this case, older elements, usually

up to the third generation, are added. However, it is important to remember that some

poisons, such as stable Samarium-149, are always present in the fuel. Therefore, it is

essential to know the chemical composition of old fuel before its reuse.
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In the literature some works involving the effects of poisons in the nuclear reactor,

such as [8, 9, 17]. We can mention that of [8] that works with the Neutron Point Kinetic

equations taking into account the effects of Xenon-135 and Samarium-149 poisons, in

which is developed an analytical solution through a decomposition method and where the

case studies are presented from the neutron poisons starting nulls in the reactor, i.e, using

as initial conditions new fuel elements. In the spirit of reference [17] are considered in the

model the effects of fission product poisons in the final behavior of the neutron density.

For this, the equations of the Neutron Point Kinetics are solved considering the tempera-

ture effects, by the Rosenbrock’s method.

We point out that simulations with the coupling of the effects of the main neutron ab-

sorbers poisons to the point kinetic model are not very common in the literature. Only a

small number of studies use simulations to test the accuracy of methodologies and the sig-

nificance of their findings. A recent study by [10], however, tackled the NPKEs by incor-

porating the impacts of not only the primary neutron poisons but also some transuranics,

utilizing the same approach as [8]. Their findings were in line with what was anticipated.

In this work, the equations of point kinetics considering poisons are deduce from the

neutron diffusion equation. The point kinetics model consists of a system of coupled

nonlinear equations for neutron density, delayed neutron precursors, and decay chains of

poisons from fission products. The system are solved using the decomposition method

[1], where the polynomials used to treat non-linearity as a source term are shown. Results

are generated for reused elements within the reactor, where poisons are already present

from the beginning of operation. The initial conditions used were sufficient poisons in a

reactor that operated for time t = 103 hours.

The results of the investigation carried out by the same author in their preceding thesis

[9] are reported in this study. In this new analysis, specific aspects related to the previous

findings were addressed, and new discoveries were made based on those earlier results.

This continuity of research allowed for a deeper understanding and improved comprehen-

sion of the subject matter. Based on the conclusions drawn, it is hoped that this study will

contribute to the advancement of knowledge in the field of study and to the development

of further research.
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2 The proposed point kinetics model from the diffusion

equation

2.1 Additional contributions by neutron poisons

The important factors of the two decay sequences are reviewed below, which are needed

to determine the poison’s impact on the reactivity. The Xenon-135 production, which

is driven by the Tellurium-135 decay chain, is simplified by only taking into account

the balances of Iodine-135 and Xenon-135 concentrations. This is because the decay of

Tellurium-135 is implicitly accounted for in the production of Iodine, which is a rea-

sonable simplification given its significantly shorter half-life compared to the other two

nuclides [7, 15]. Thus, we consider a bulk Iodine yield γI , the small Xenon yield γXe, an

effective neutron speed v̄ according to one energy group and the physical parameters, the

decay constants λI,Xe, the macroscopic fission cross section Σf , the microscopic absorp-

tion cross section σXe, that resemble the relations between the concentrations CI,Xe and

the neutron density n.

dCI(t)

dt
= γIΣf v̄n(t)− λICI(t),

dCXe(t)

dt
= γXeΣf v̄n(t) + λICI(t)− λXeCXe(t)− σXeCXe(t)v̄n(t).

(1)

The decay chain of Neodymium-149 can also be simplified similarly, assuming bulk

production of Promethium-149 (γPm) due to the much shorter half-life of Neodymium.

The concentration balance of Promethium and Samarium can be described by a similar

equation system as the one mentioned before, with the exception of the decay term of

Samarium being absent since it is a stable nuclide.

dCPm(t)

dt
= γPmΣf v̄n(t)− λPmCPm(t),

dCSm(t)

dt
= λPmCPm(t)− σSmCSm(t)v̄n(t).

In the given equation, CPm,Sm represents the concentrations of Promethium-149 and

Samarium-149, respectively, while the other symbols have the same meaning as in the

previously mentioned equations (1).
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2.2 Point kinetics considering poison from the diffusion equation

To incorporate the impact of neutron poisons in a coherent manner, it is preferable to

begin with the time dependent neutron diffusion equation. Additionally, we presume that

the system was in equilibrium state until a certain moment t = t0. For the subsequent

period of transition, the neutron diffusion is modeled using the familiar equation, along

with the concentration of one precursor for the sake of simplicity.

1

v(E)

∂

∂t
φ(r, E, t)−∇ · (D(r, E, t)∇φ(r, E, t)) + Σt(r, E, t)φ(r, E, t)

=

∫

∞

0

{χ(E)ν(E ′)Σf (r, E
′, t) + Σs(r, E

′ → E, t)}φ(r, E ′, t) dE ′

+λχp(E)C(r, t)−

∫

∞

0

βχd(E)ν(E ′)Σf (r, E
′, t)φ(r, E ′, t) dE ′,

∂

∂t
C(r, t) = β

∫

∞

0

ν(E ′)Σf (r, E
′, t)φ(r, E ′, t) dE ′ − λC(r, t).

Here,

χ(E) = (1− β)χp(E) + βχd(E)

and

Σx(r, E, t) =
I
∑

i=1

Ci(r, t)σ
i
x ,

where I is the total number of nuclides, χp(E) and χd(E) are respectively fission spectra

of prompt and delayed neutrons.

The process of simplifying the diffusion model into point kinetics involves a tradi-

tional approach that utilizes the adjoint flux to solve the stationary problem and results

in

d

dt

(
∫

V

∫

∞

0

φ∗(r, E, t0)
1

v(E)
φ(r, E, t) dE d3r

)

=

∫

V

∫

∞

0

φ∗(r, E, t0)×

×

(
∫

∞

0

{χ(E)ν(E ′)Σf (r, E
′, t) + δΣs(r, E

′ → E, t)}φ(r, E ′, t) dE ′

+∇ · (δD(r, E, t)∇φ(r, E, t))− δΣt(r, E, t)φ(r, E, t)) dE d3r (2)

−

∫

V

∫

∞

0

φ∗(r, E, t0)

(
∫

∞

0

βχd(E)ν(E ′)Σf (r, E
′, t)φ(r, E ′, t) dE ′

)

dE d3r

+λ

∫

V

∫

∞

0

φ∗(r, E, t0)χd(E)C(r, t) dE d3r ,
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where

δD(r, E, t) ≡ D(r, E, t)−D(r, E, t0),

and

δΣx(r, E, t) ≡ Σx(r, E, t)− Σx(r, E, t0) =

I
∑

i=1

{Ci(r, t)− Ci(r, t0)}σ
i
x(E) .

To emphasize the impact of neutron poisons on kinetics, we simplify equation (2) by

disregarding the terms δD, δΣs, and δΣf . Additionally, we assume that the precursor

concentration equation does not involve any spatial differential operator. Furthermore,

the initial condition of the precursor concentration follows the same spatial pattern as the

scalar flux, which leads to an identical shape of the spatial distributions for both the scalar

flux and the precursor concentration, except for a time dependent scale factor ([18]).

φ(r, E, t) ∼= f(r, E)n(t),

C(r, E, t) ∼= f(r, E)C(t).

After integrating out energy and spatial degrees of freedom renders equation (2)

d

dt
n(t) =

ρ(t)− β̄(t)

Λ
n(t) + λC(t) , (3)

where with

F ≡

∫

V

{
∫

∞

0

χ(E)φ∗(r, E, t0) dE

}

×

×

{
∫

∞

0

ν(E ′)Σf (r, E
′, t0)f(r, E

′) dE ′

}

d3r ,

the reactivity, the delayed precursor neutron fraction, neutron generation time and precur-

sor concentration are [16]

ρ(t) ≡
1

F

∫

V

∫

∞

0

φ∗(r, E, t0)

(
∫

∞

0

{χ(E)ν(E ′)δΣf (r, E
′, t)

+δΣs(r, E
′ → E, t) } f(r, E ′) dE ′ +∇ (δD(r, E, t)∇f(r, E))

−δΣt(r, E, t)f(r, E) ) dE d3r ,

(4a)

β̄(t) ≡ β
1

F

∫

V

{
∫

∞

0

χd(E)φ∗(r, E, t0) dE

}

×

×

{
∫

∞

0

ν(E ′)Σf (r, E
′, t)f(r, E ′) dE ′

}

d3r
(4b)
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Λ ≡
1

F

∫

V

∫

∞

0

φ∗(r, E, t0)
1

v(E)
f(r, E) dE d3r =

1

F v̄
, (4c)

C(t) ≡
1

ΛF

∫

V

∫

∞

0

φ∗(r, E, t0)χd(E)C(r, t) dE d3r . (4d)

To derive the equation for neutron density that takes into account the impact of fission

products, particularly the substances that absorb neutrons and affect the reactor’s reactiv-

ity, we simplify the algebraic expressions used in (4a):

• Changes in the fission cross section are not taken into account as the duration of the

analysis is relatively short compared to the time required for fuel burning to cause

significant alterations in the cross section;

• The alterations in the scattering cross section are disregarded because the modifica-

tions in the reactor core’s chemical composition are minimal;

• The changes in the diffusion parameter, which is inversely related to the transport

cross section, are not considered and assumed to remain constant.

Consequently, the changes in the absorption cross section caused by the dominant neutron

poisons, such as Xenon and Samarium, are taken into account.

Σa(r, E, t0) = ΣXe
a (r, E, t0) + ΣSm

a (r, E, t0) = σXeCXe + σSmCSm .

We are now breaking down the terms in equation (4a) into two parts: the first is a reac-

tivity contribution resulting from control operations performed on the reactor, which is

represented by time-dependent functions that are typically of short duration (around 101

seconds). The second part is the contribution from the creation and removal of the primary

neutron poisons (Xenon-135 and Samarium-149). This latter contribution to reactivity is

influenced by changes in the macroscopic absorption cross sections of these two isotopes,

which are described in the references [8], [17].

ρ(t) = ρs(t) + ρl(t) .

Here ρs refers to the short time scale (control rod) and ρl to the long time scale (poisons).

Upon substituting the reactivity in equation (3) yields,

d

dt
n(t) =

ρs(t)− β̄(t)

Λ
+ λC(t)+

∫

V

∫

∞

0

φ∗(r, E, t0)
(

−δΣXe
a (r, E, t0)− δΣSm

a (r, E, t0)
)

dE d3r
∫

V

∫

∞

0

φ∗(r, E, t0)
1

v(E)
f(r, E) dE d3r

n(t) .
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Note, when examining reactivity on a long timescale, the neutron generation time Λ

becomes insignificant and has no impact on the observed changes. Rather, the production

and elimination of Xenon-135 and Samarium-149 are the primary drivers of changes.

Once the two timescales in the reactivity have been separated and the integrals that make

up ρl(t) have been identified, the resulting non-linear model equation for neutron density,

which explicitly accounts for the presence of the neutron poison products, consists of the

usual coupled neutron density and delayed neutron precursor equations, as well as the

equations governing the decay chains that regulate the concentration of neutron poisons.

Thus, we have the following non-linear system

d

dt
n(t) =

ρs(t)− β̄

Λ
n(t) + λC(t)− v̄ (σXeCXe(t) + σSmCSm(t))n(t),

d

dt
C(t) =

β̄

Λ
n(t)− λC(t),

d

dt
CI(t) = v̄γIΣfn(t)− λICI(t),

d

dt
CXe(t) = v̄γXeΣfn(t) + λICI(t)− λXeCXe(t)− v̄σXeCXe(t)n(t),

d

dt
CPm(t) = v̄γPmΣfn(t)− λPmCPm(t),

d

dt
CSm(t) = λPmCPm(t)− σSmCSm(t)v̄n(t),

(5)

where v̄ given in [cm/h] is the velocity of the neutron, Σf given in [cm−1] is the macro-

scopic cross-section of fission, λ given in [h−1] is the delayed neutron precursor decay

constant, C(t) given in [cm−3] is the concentration of delayed neutron precursors at time

t, σXe given in [cm2] is the microscopic cross-section of absorption of the element Xenon-

135, CXe(t) given in [cm−3] is the concentration of Xenon-135 in time t, σSm given in

[cm2] is the microscopic cross-section of absorption of Samarium-149, CSm(t) given in

is the concentration of Samarium-149 in time t, γI is the fission yield of the nuclide

Iodine-135, λI given in [h−1] is the radioactive decay constant of Iodine-135, CI(t) given

in [cm−3] is the concentration of Iodine-135 at the instant t, γXe is the fission yield of

the nuclide Xenon-135, λXe given in [h−1] is the radioactive decay constant of Xenon-

135, γPm is the fission yield of the nuclide Promethium-149, CPm(t) given in [cm−3] is

the concentration of Promethium-149 in time t and λPm given in [h−1] is the radioactive

decay constant of Promethium-149.

Braz. Elect. J. Math., Ituiutaba, v.4, jan/dez 2023, p. 1 - 14. 8



On a point kinetic with explicit presence of neutron poisons

3 Applied methodology

For convenience, the non-linear equation system (5) is cast in matrix form, where the

solution is

Y = (n(t), C(t), CI(t), CXe(t), CPm(t), CSm(t))
T =

∞
∑

i=0

Yi ,

which, we expand into an infinite series. The methodology used consists of two parts: the

first is solve the linear system with non-homogeneous initial conditions, while the second

part one finds approximations to the solution of the system with source term using con-

ditions homogeneous initials, treating the source term as a non-linearity treated through

the Adomian decomposition method. present in references [8, 13, 11, 5]. The first part of

recursive scheme has a solution given by [4]

Y0(t) = exp(At)YI .

All subsequent recursion steps are then set-up by a linear differential equation system,

where the non-linearity is present as a source term Fk, which is composed from the solu-

tions of the previous recursion steps, with solution:

Yk(t) =

∫ t

0

exp(A(t− τ))Fk(Y0,Y1, ...,Yk−1) dτ ,

where the Adomian polynomials are [2]

Fk(Y0,Y1, ...,Yk−1) = −

(

Nk−1

k−1
∑

j=0

Yj +

(

k−2
∑

j=0

Nj

)

Yk−1

)

. (6)

Once Yk is convergent one may truncate the series at a finite k such that the solution is

within a prescribed precision. This way, Fk(Y0,Y1, ...,Yk−1) can be cast in vector form

Fk(Y0,Y1, ...,Yk−1) =





















−σXev̄A
Xe
k−1

− σSmv̄A
Sm
k−1

0

0

−σXev̄A
Xe
k−1

0

−σSmv̄A
Sm
k−1





















,
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where AXe
k−1

and ASm
k−1

are the Adomian polynomials of Xenon and Samarium for recursion

step k − 1. Consequently, the Adomian polynomials for the non-linearities (equation (6))

are of the form [3], [8]

Ai
0

= N(C i
0
, n0) = C i

0
n0 ,

Ai
1

=
d

dω
((C0

i + C1

i ω)(n0 + n1ω))|ω=0 = C0

i n1 + C1

i n0 ,

Ai
2

=
1

2

d

dω
((C1

i + 2C2

i ω)(n0 + n1ω) + (C0

i + C1

i ω)(n1 + 2n2ω))|ω=0

= C0

i n2 + C1

i n1 + C0

i n2 ,

Ai
3

=
1

3!

d

dω
((C2

i + 3C3

i ω)(n0 + n1ω) + (C1

i + 2C2

i ω)(n1 + 2n2ω)+

+(C0

i + C1

i ω)(n2 + 3n3ω))|ω=0 = C3

i n0 + C2

i n1 + C1

i n2 + C0

i n3 ,
...

Ai
j =

j
∑

k=0

Cj−k
i nk .

4 Numerical simulations considering burned-up fuel

We present results for refill condition operation, where neutron poisons are present. To

this end we use as initial condition results from the previous case for t = 103h.

The initial condition are

n(0) = 108 [cm−3];

C(0) =
β − ρ(t)

λΛ
n(0) [cm−3];

CI(0) =
γIΣfn(0)

λI

[cm−3];

CXe(0) =
γXe + γI

λXe + σXen(0)
[cm−3];

CPm(x, 0) =
γPmΣf + n(0)

λPm

[cm−3] e,

CSm(x, 0) =
γSmΣf

σSm

[cm−3].

Two cases for different short term reactivity parametrisations ρs are presented, a case
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with oscillating positive reactivity and a case with a step wise reactivity function.

ρs(t) = ρ1 sin(at)

ρs(t) =











ρ1 < 0, mod(t, 12) = 0, 1, 2, 3

ρ2 = 0, mod(t, 12) = 4, 5, 6, 7

ρ3 > 0, mod(t, 12) = 8, 9, 10, 11

where ρ1, ρ2, ρ3 and a are constants and mod is the modulus operation, i.e. the remainder

after division of the first by the second number. We show the solutions for n(t), C(t),

CXe(t) and CSm(t).
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Figure 1: Time dependence of neutron density n(t) (upper left), the precursor concentration C(t)
(upper right), the short term concentration of Xenon CXe(t) (lower left) and Samarium CSm(t)
(lower right) with short therm reactivity ρs = 0.0001 sin

(

2π
12
t
)

.

In the case with oscillatory reactivity (Fig. 1), the neutron density as well as the

precursor concentration follow also in this case the imposed time signature comparable

with the new fuel case in [8]. Differently, than the new fuel case the Xenon concentration

decreases with slight ondulations after passing a maximum at ∼ 101h until obtaining an

asymptotic value, whereas the Samarium concentration increases linearly.
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Figure 2: Time dependence of neutron density n(t) (upper left), the precursor concentration C(t)
(upper right), the short term concentration of Xenon CXe(t) (lower left) and Samarium CSm(t)
(lower right) with short therm reactivity given by the step wise function.

In the case with step wise reactivity and fuel elements with burn-up (Fig. 2), neu-

tron density and precursor concentrations show the characteristic time signature whereas

Xenon passes through a local maximum at t ≈ 25h and decreasing with an almost van-

ishing slope. The Samarium concentration shows again a linearly rising tendency.

5 Conclusions

In the present work we deduce a model for nuclear reactor point kinetics from the neutron

diffusion equation. It should be noted that the usual point kinetics model is linear, but

when accounting for neutron poisons, the model becomes nonlinear as their presence

is dependent on the neutron population. To solve this coupled system of equations, we

utilize an analytical representation based on a decomposition method similar to that found

in previous literature [2, 8, 11, 13, 14]. The polynomials used in the source term that

depend on previous steps were shown.

In the cases examined in this study, a limited number of 9 recursion steps were nec-
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essary to achieve a satisfactory level of precision, as noted in [13]. This solution allows

for the calculation of various transient behaviors of nuclear reactor point kinetics, for new

reactor fuel as well as fuel compositions containing fuel elements with burn-up.

The study presented results for cases in which fuel elements were reused within the

reactor. One to represent scenarios with oscillatory behavior and the other to model step-

wise reactivity. The results demonstrated that the obtained solutions were consistent with

expected physical behavior. It is expected that this study will contribute to the develop-

ment of knowledge in this specific area and pave the way for future research.
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