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Abstract. This article aims to introduce the concept of generalized continuity of a function
with respect to another function and analyse the topological aspects of this concept. Ini-
tially, the article presents the concept and the properties of generalized limit of a function
with respect to another function, highlighting that the Riemann integral is a particular case
of generalized limit. Then, the definition of generalized continuity is presented emphasizing
that standard continuity is a particular case of it and hence they do not coincide, in general.
Finally, some topological aspects associated with the concept of generalized continuity are
approached in order to present proofs about the preservation of topological invariants via
generalized continuity, such as preservation of compactness and connectedness.
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Resumo. Este artigo visa introduzir o conceito de continuidade generalizada de uma função
com respeito a outra função e analisar os aspectos topológicos provenientes deste conceito.
Inicialmente, o artigo apresenta o conceito e as propriedades de limite generalizado de uma
aplicação com respeito a outra aplicação, destacando que integração de Riemann trata-se
de um caso particular de limite generalizado. Em seguida, a definição de continuidade gen-
eralizada é apresentada enfatizando que a continuidade padrão é um caso particular dela e,
portanto, elas não coincidem, em geral. Por fim, alguns aspectos topológicos associados ao
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conceito de continuidade generalizada são abordados a fim apresentar provas sobre a preser-
vação de invariantes topológicos via continuidade generalizada, tais como preservação de
compacidade e conexidade.

Palavras-chave. Limite. Continuidade. Invariante topológico.

1 Introduction

In [10] the authors considered Young systems and their trajectories, which are gener-
ated by Young integrals strongly dependent on integrators. These integrators have a role
similar to the control parameters that generate trajectories of control systems as in [3].
Nonetheless, trajectories, integrated functions and integrators for Young systems may fail
to have differentiability property. However, to study specific trajectories of the Young
systems in [11], called regular trajectories, it is important to have results similar to those
presented in control systems with some differentiability, such as formulas about depen-
dence on parameters. Some of these results present in [11] have analogues in systems of
differential equations, but the proofs of these results cannot make use of techniques that
involve differentiability, precisely due to the lack of this characteristic in Young systems.
Therefore, in [11] Vieira, Kizil and Catuogno focused on the fact that integrals and deriva-
tives are special cases of limits and hence when they operated at the level of definition of
limits, they obtained proofs of the expected results in the context of the Young systems.

Considering the possibility that the notion of limit may contain unrevealed informa-
tion, it is convenient to ask if limits admit some type of control parameter. In fact, it was
evidenced in [2] that usual limits are driven by identity functions and it was proposed that
this notion can be expanded admitting that limits can be directed by other types of func-
tions. In summary, it was presented in [2] a notion of limit named by generalized limit.
The notion of generalized limit leads naturally to a concept of generalized continuity and
this can be seen briefly, but without due rigor, in [12].

This article aims to formalize the concept of generalized continuity inspired by the
notion of generalized limit, moreover, it has the intention of work some topological im-
plications arising from the concept of generalized continuity.

The terminology “generalized continuity” has already been addressed in other con-
texts and with other meanings, for example, in the recent works proposed by Kupka in
[5], [6], [7] and [8]. The concept of generalized continuity present in this article does
not coincide with the notion of continuity proposed by Kupka and this is evidenced in the
article through examples.
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This article is organized to bring a general and thorough view to the reader. In this
introduction, results about usual notions of limit and continuity are reviewed so that a
parallel can be made between this usual notions and the proposed generalized notions.
Subsequently, the reader has a brief explanation of the motivation that led to formulation
of the generalized limit concept. Next, the reader is presented to the notion of generalized
continuity in the context of metric spaces. The next step is to approach the generalized
continuity in the context of topological spaces and in this part are located the definitions,
theorems and examples most robust of the article. The following section is dedicated
to highlighting the differences between generalized continuity via generalized limit and
continuity in the sense proposed by Kupka. Finally, there is a section to deal with some
topological invariants (compactness and connectedness) in the light of generalized conti-
nuity.

This article will assume that the reader is familiar with notions about topology of
metric spaces and general topology. Thus, in this introduction the statements of the next
propositions are mentioned, however their proofs are omitted. Further details about the
propositions mentioned can be seen in [4] and [9].

Although the general properties about image and preimage of functions are elementary
results, these properties are used recurrently and crucially in the proofs of propositions
and theorems proposed in the next sections of this article. For this reason these properties
are emphasized here.

Proposition 1. Let X and Y be sets and let f : X → Y be a function. The following
statements hold true:

(i) f(A) = ∅ if, and only if, A = ∅ .

(ii) If A1 ⊂ A2 ⊂ X , then f(A1) ⊂ f(A2).

(iii) If A1, A2 ⊂ X , then f(A1 ∪ A2) = f(A1) ∪ f(A2).

(iv) If A1, A2 ⊂ X , then f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2).

Proposition 2. Let X and Y be sets and let f : X → Y be a function. The following
statements hold true:

(i) If B1 ⊂ B2 ⊂ Y , then f−1(B1) ⊂ f−1(B2).

(ii) If B1, B2 ⊂ Y , then f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2).

(iii) If B1, B2 ⊂ Y , then f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2).

It is also important to highlight results that merge image and preimage of a function.
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Proposition 3. Let X and Y be sets and let f : X → Y be a function. The following
statements hold true:

(i) If A ⊂ X , then A ⊂ f−1(f(A)).

(ii) If A ⊂ X and f is injective, then A = f−1(f(A)).

(iii) f−1(f(X)) = X .

(iv) If B ⊂ Y , then f(f−1(B)) ⊂ B.

(v) If B ⊂ Y and f is surjective, then f(f−1(B)) = B.

Proposition 4. Let X and Y be sets and let f : X → Y be a function. The following
statements hold true:

(i) If A ⊂ X and B ⊂ Y , then B ∩ f(A) = f(f−1(B) ∩ A).

(ii) If B ⊂ f(A), then there exists C ⊂ A such that f(C) = B.

(iii) f(A) ⊂ B if, and only if, A ⊂ f−1(B).

Definition 1. Let R be equipped with the usual metric, let f : X ⊂ R→ R be a function
and let a be an accumulation point in X . A real number b is said to be a limit of f(x) as
x approaches a if, for every ε > 0, there exists a δ > 0 such that

x ∈ X and 0 < |x− a| < δ implies |f(x)− b| < ε . (1)

Since the codomain of the function in the previous definition is R and since R is a
Hausdorff space, being b a limit of f(x) as x approaches a, then b is unique, in the sense
of to satisfy condition (1) and in this case b is denoted, without any doubt, by

b = lim
x→a

f(x) .

In other words, the above definition means f(x) is arbitrarily close to b, as long as
x ∈ X is sufficiently close to a.

In the definition of a limit, it is required that a is an accumulation point in X , because
this guarantees the existence of points in the domain X of the function f that are close to
a. However, it is not necessary for a to belong to X , that is, it is not necessary that f is
defined at the point a for the limit of f(x) to exist as x approaches a.

In mathematical literature there are works in which the condition (1) of Definition 1
is replaced by the following condition:

x ∈ X and |x− a| < δ implies |f(x)− b| < ε . (2)
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In this case, a real number b that satisfies condition (2) is said to be a non-deleted limit
of f(x) as x approaches a. Considering the context in which a is an accumulation point
in X, the notion of non-deleted limit is more restrictive than the notion of limit (deleted
limit) given by Definition 1, because there are cases of functions that admit limit, but do
not admit non-deleted limit. For example, considering f : R→ R given by

f(x) =

2, se x = 0

1, se x 6= 0
,

then lim
x→0

f(x) = 1, but there is not non-deleted limit of f(x) as x approaches 0, because

for every real number b, taking ε = 1
2
, the condition (2) fails, for all δ > 0.

It is important to note that in most mathematical literature the Definition 1 is not
considered for cases in which a is an isolated point of X , because in this situation, every
real number b becomes a limit of f(x) as x approaches a. In fact, if a is an isolated point
of X , then there is r > 0 such that the open ball with center a and radius r is the unit
set {a}. Suppose that a real number b does not satisfy condition (1). In this case, there is
ε > 0 such that for every δ > 0, there exists xδ ∈ {x ∈ X : 0 < |x− a| < δ} satisfying
|f(xδ)− b| ≥ ε. In particular, for δ = r, there exists xr ∈ {x ∈ X : 0 < |x−a| < r} and
|f(xr) − b| ≥ ε, but this is a contradiction, because the set {x ∈ X : 0 < |x − a| < r}
is empty. Therefore, if a is an isolated point of X , every real number b satisfies condition
(1). Now, if a is an isolated point of X , only the number f(a) satisfies condition (2).

The definition of usual limit for a function can be reproduced for functions between
metric spaces.

Definition 2. Let (M,dM) and (N, dN) be metric spaces, let X be a subset of M , let
f : X ⊂ (M,dM) → (N, dN) be a function and let a be an accumulation point in X . A
point b ∈ N is said to be a limit of f(x) as x approaches a if, for every ε > 0, there exists
a δ > 0 such that

x ∈ X and 0 < dM(x, a) < δ implies dN(f(x), b) < ε .

Given a metric space (M,dM) and given X a subset M , we can consider X as met-
ric subspace of (M,dM). Thus, without loss of generality, we can simply consider the
domains of functions as metric spaces.

Definition 3. Let (M,dM) and (N, dN) be metric spaces and let a ∈ M . A function
f : (M,dM) → (N, dN) is said to be continuous at a if, for every ε > 0, there exists a
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δ > 0 such that

x ∈M e dM(x, a) < δ implies dN(f(x), f(a)) < ε .

A function f : (M,dM)→ (N, dN) is said to be continuous if f is continuous at a, for
all a ∈M .

Proposition 5. Let (M,dM) and (N, dN) be metric spaces and let a ∈ M . A function
f : (M,dM)→ (N, dN) is continuous at a if, and only if, a is isolated point of M or

lim
x→a

f(x) = f(a) .

The definition of continuity for a function between metric spaces can be rewritten, in
an equivalent way, using the language of open balls in metric spaces.

Proposition 6. Let (M,dM) and (N, dN) be metric spaces and let a ∈ M . A function
f : (M,dM) → (N, dN) is said be continuous at a if, and only if, for every ε > 0, there
exists a δ > 0 such that

f (BM(a; δ)) ⊂ BN(f(a); ε) .

Proposition 7. Let (M,dM) and (N, dN) be metric spaces. We have that a function
f : (M,dM) → (N, dN) is continuous if, and only if, for every open subset U of N (in
metric sense), it is valid that f−1(U) is an open subset of M (in metric sense).

In view of the previous proposition, in general topology the definition of continuity
is expanded to the context of the functions between topological spaces, as can be seen in
the next definition. Before, a notation is introduced to simplify the dictations about open
sets with respect to a topology. Let (X, T ) be a topological space and let p ∈ X , then the
collection of all open sets containing p, with respect the topology T , is denoted by Tp.

Definition 4. Let (X, T X) and (Y, T Y ) be topological spaces, let f : (X, T X)→ (Y, T Y )

be a function and let a ∈ X . We say that f is continuous at a if for every U ∈ T Yf(a), there
exists a V ∈ T Xa such that

f(V ) ⊂ U . (3)

We simply say that a function f : (X, T X)→ (Y, T Y ) is continuous if f is continuous
at a, for all a ∈ X .

Proposition 8. Let (X, T X) and (Y, T Y ) be topological spaces. We have that a function
f : (X, T X)→ (Y, T Y ) is continuous if, and only if, f−1(U) ∈ T X , for all U ∈ T Y .
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2 Generalized limit

When observing the definition of the Riemann integral, it is verified that the limit
used in its definition is not precisely the usual limit treated in courses of Differential and
Integral Calculus and Real Analysis, because the sum used in this definition depends on a
partition, while the limit applied to the sum is not calculated with respect to the partition,
but calculated with respect to the norm of the partition, when it tends to zero.

Considering this observation, Vieira and Braz proposed in [2] a generalization of this
special situation observed for limits of the Riemann sums and they called the limits of
functions proposed in this generalization by generalized limits. It was verified that the
definition of generalized limit allows one to prove properties and results similar to those
existing for the usual limits.

First, let us remember the definition of Riemann integral of a bounded real function
defined on a compact interval. For this we need to present some previous arguments about
partitions of intervals.

A partition of the interval [a, b] is a finite set P = {t0 < t1 < . . . < tk}, with t0 = a

and tk = b. Each interval [ti−1, ti] with length ti−ti−1 is named o i-th interval of partition
P . The set of all partitions of the [a, b] is denoted by P([a, b]). The norm of a partition
P = {t0 < t1 < . . . < tn} ⊂ [a, b] is the number ‖P‖ = max{(ti − ti−1) : ti ∈ P}.
Moreover, a tagged partition of the interval [a, b] is a pair P ∗ = (P, ε), where P is a
partition of the interval [a, b] and ε = (ε1, . . . , εn) is a list with n numbers such that
ti−1 ≤ εi ≤ ti, for each i = 1, 2, . . . , n. The norm of a dotted partition P ∗ = (P, ε) of
the interval [a, b] is defined as the value of the norm of P , that is, ‖P ∗‖ = ‖P‖. The set
of all partitions of the interval [a, b] is denoted by P∗([a, b]).

Definition 5. Let f : [a, b] → R be a bounded function and let P ∗ = (P, ε) be a tagged
partition of interval [a, b], with P = {t0 < t1 < . . . < tn} and ε = (ε1, . . . , εn). The
Riemann sum of f with respect to P ∗ is the numberRf (P

∗) given by

Rf (P
∗) =

n∑
i=1

f(εi) · (ti − ti−1) =
∑

(ti,εi)∈P ∗
f(εi) · (ti − ti−1) .

Definition 6. Let f : [a, b]→ R be a function. The Riemann sum Rf (P
∗) tends to b ∈ R

as ‖P ∗‖ approaches 0, and is written

b = lim
‖P ∗‖→0

 ∑
(ti,εi)∈P ∗

f(εi) · (ti − ti−1)
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if for every ε > 0, there exists a δ > 0 such that |Rf (P
∗)− b| < ε, for all P ∗ ∈ P∗([a, b]),

with ‖P ∗‖ < δ. The number b is called Riemann integral of f in the interval [a, b] and is

denoted by
b∫
a

f(x) dx.

Note that the idea of limit present in the definition of Riemann integral is not exactly
a usual limit, since for a usual limit of function is required of objects that tend to a point
of accumulation a to be points of the domain of this function. In a Riemann integral
the mathematical objects that tend to 0 are the norms of the tagged partitions and not
the partitions themselves, while the Riemann sum is described as a function of tagged
partitions and not a function of norms of these partitions.

Also note that in the usual limit lim
x→a

f(x) the points x that tend to a can be rewritten

as x = id(x), where id denotes the identity function defined in X , which is the domain of
the function f . Thus, the limit can be written as

lim
x→a

f(x) = lim
id(x)→a

f(x) .

A natural question arises: can we exchange id(x) with a function n (which has the same
domain of the function f ) in the notation of the usual limit of f and this notation to
continue with some pertinent mathematical sense?

The question before and the observation made about the limit present in Riemann
integral are motivators for the definition of generalized limit of a function, which is a
good generalization for the definition of the usual limit, in the sense that it is possible to
obtain properties and results similar to those already known about the usual limits.

Definition 7. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let z be an accumulation point
in the image n(X). We say that the point y ∈ Y is generalized limit of f(x) as n(x)

approaches z if for every ε > 0, there exists a δ > 0 such that

x ∈ X and 0 < dZ(n(x), z) < δ implies dY (f(x), y) < ε . (4)

Proposition 9. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let z be an accumulation point in
n(X). If y is generalized limit of f(x) as n(x) approaches z e y′ is generalized limit of
f(x) as n(x) approaches z, then y = y′.

Demonstração. Suppose y 6= y′. We have that dY (y, y′) > 0 and ε = dY (y,y′)
2

> 0. Since
y is generalized limit of f(x) as n(x) approaches z, it follows that for the ε considered,
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there exists a δ1 > 0 such that

x ∈ X and 0 < dZ(n(x), z) < δ1 implies dY (f(x), y) < ε . (5)

Similarly, since y′ is generalized limit of f(x) as n(x) approaches z, it follows that for
the ε considered, there exists a δ2 > 0 such that

x ∈ X and 0 < dZ(n(x), z) < δ2 implies dY (f(x), y′) < ε . (6)

Taking δ = min{δ1, δ2} and using the hypothesis that z is point of accumulation in n(X),
then there exists x0 ∈ X such that n(x0) ∈ BZ(z, δ)−{z}, that is, 0 < dZ(n(x0), z) < δ.
It follows from expressions (5) and (6) that

dY (y, y′) ≤ dY (y, f(x0)) + dY (f(x0), y′) < ε+ ε = dY (y, y′) ,

which is a contradiction. Therefore, y = y′.
Once one has uniqueness for the generalized limit of a function with respect to another,

as seen in Proposition 9, one can use an unequivocal notation to represent generalized
limits. The generalized limit of a function f with respect to a function n and a point z, if
this exists, is denoted by

glim
n(x)→z

f(x) .

Example 1. The most obvious example of a generalized limit is the Riemann integral
of an integrable function f : [a, b] → R. In fact, considering R equipped with the usual
metric, considering the functionRf : P∗([a, b])→ R that associates each tagged partition
P ∗ of [a, b] to the Riemann sum of f with respect to P ∗ and considering the function
N : P∗([a, b])→ R that associates each tagged partition P ∗ of [a, b] to its norm, we have
by the definition of Riemann integral of f that this is the generalized limit of the function
Rf with respect to the function N and the point 0 ∈ R, this is,

b∫
a

f(x) dx = glim
N (P ∗)→0

Rf (P
∗) .

Example 2. Consider f : R→ R given by

f(x) =


x, if x < 1

3, if x = 1

x+ 1, if x > 1
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and n : R→ R given by

n(x) =

0, if x = 1

x− 2, if x 6= 1

Note that the usual limit lim
x→1

f(x) does not exist.

However, we have that glim
n(x)→n(1)

f(x) = glim
n(x)→0

f(x) = 3. In fact, given ε > 0, take δ =

min{1, ε}. Hence, if 0 < |n(x)−0| < δ, this results in 0 < |x−2| = |(x−2)−0| < δ ≤ 1,
which implies x ∈ (1, 2)∪(2, 3) and therefore |f(x)−3| = |(x+1)−3| = |x−2| < δ ≤ ε.

graf(f) graf(n)

f(2) = f(1) = 3

3

glim f(x) = 3
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n(x) → n(1)
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ǫ = 2
δ = 1

Figure 1: an example of generalized limit

With this last example, we see that the generalized limit and usual limit are not equiva-
lent concepts. Every usual limit is a generalized limit with respect to the identity function,
however the existence of a generalized limit for a function f with respect to some other
function does not imply the existence of the usual limit for f .

Another important point to highlight is that in the definition of generalized limit of a
function f with respect to a function n, it is not necessary to require any type of math-
ematical structure (topology, metric, norm, internal product, vector operations, etc.) in
the domains of f and n, it is necessary metric structure only in the codomains of these
functions. Note that in the first example, in the domain P∗([a, b]) of the functionsRf and
N it was not considered any structure.

Next, we list some results about generalized limits and their proofs can be seen in [2].
These results allow the reader to realize that the concept of generalized limit has similar
properties to those already known in the usual limits.

Proposition 10. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let

Braz. Elect. J. Math., Ituiutaba, v.2 - n.3, jan/jun 2021, p. 70 - 107. 79



VIEIRA, M. G. O.

f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let z an accumulation point
in n(X). Then glim

n(x)→z
f(x) = y if, and only if, for every sequence (xk)

∞
k=1 ⊂ X , with

n(xk)→ z, we have f(xk)→ y.

Proposition 11. LetX be a non-empty set, let (Y, ‖ · ‖) be a R-normed space, let (Z, dZ)

be a metric space and let f : X → (Y, ‖ · ‖) , g : X → (Y, ‖ · ‖) and n : X → (Z, dZ) be
functions such that the generalized limits glim

n(x)→z
f(x) = y and glim

n(x)→z
g(x) = w exist. The

following statements hold true:

(i) glim
n(x)→z

(f + g)(x) = y + w = glim
n(x)→z

f(x) + glim
n(x)→z

g(x).

(ii) If λ ∈ R, then glim
n(x)→z

λ · f(x) = λ · y = λ · glim
n(x)→z

f(x).

Proposition 12. Let X be a non-empty set, let R be equipped with the usual metric, let
(Z, dZ) be a metric space and let f : X → R , g : X → R and n : X → Z be functions
such that the generalized limits glim

n(x)→z
f(x) = y and glim

n(x)→z
g(x) = w exist. The following

statements hold true:

(i) glim
n(x)→z

(f · g)(x) = y · w = glim
n(x)→z

f(x) · glim
n(x)→z

g(x).

(ii) glim
n(x)→z

f(x)
g(x)

= y
w

, since that w 6= 0.

3 Generalized continuity in metric context

A question that arises about generalized limits of functions is: Can generalized lim-
its lead to some concept of continuity, in the same way that classical continuity can be
characterized through usual limits of functions? The answer to this question is yes, and
we present in the next sections of this article the details of the idea of continuity based on
generalized limits.

Since the concept of continuity for functions between metric spaces is directly related
to the usual limits of these functions with respect to points of their domains, it is possible
to propose a generalization of the concept of continuity for functions between metric
spaces based on the concept of generalized limits for functions between metric spaces.

Definition 8. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces and let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let a ∈ X . The function f is said
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be continuous with respect to n (or n-continuous) at a if for every ε > 0, there exists a
δ > 0 such that

x ∈ X and dZ(n(x), n(a)) < δ implies dY (f(x), f(a)) < ε . (7)

Theorem 1. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let a ∈ X . The following
statements hold true:

(i) If f is n-continuous at a, then n(a) is isolated point of the image n(X) or

glim
n(x)→n(a)

f(x) = f(a)

(ii) If n(a) is isolated point of the image n(X) and n−1({n(a)}) = {a}, then f is n-
continuous at a.

(iii) If glim
n(x)→n(a)

f(x) = f(a) and n−1({n(a)}) = {a}, then f is n- continuous at a.

Demonstração. (i) Let a ∈ X such that n(a) is not isolated point of n(X). Thus, n(a)

is an accumulation point in n(X). Given ε > 0, since f is n-continuous at a, then there
exists a δ > 0 such that the condition (7) is satisfied and, in particular, the condition (4) is
satisfied for z = n(a) and y = f(a). Therefore, glim

n(x)→n(a)

f(x) = f(a).

(ii) Note that dZ(n(x), n(a)) = 0 implies n(x) = n(a) and this implies x = a, be-
cause n−1({n(a)}) = {a} by hypothesis. Since n(a) is an isolated point of n(X),
then there exists a δ > 0 such that BZ(n(a); δ) ∩ n(X) = {n(a)}. Hence, given
ε > 0 and using this δ > 0, then dZ(n(x), n(a)) < δ implies x = a and this implies
dY (f(x), f(a)) = dY (f(a), f(a)) = 0 < ε. Therefore, f is continuous at a.

(iii) If glim
n(x)→n(a)

f(x) = f(a), then given ε > 0, there exists a δ > 0 such that the condition

(4) is satisfied for z = n(a) and y = f(a). We have that dZ(n(a), n(a)) = 0 < δ implies
dY (f(a), f(a)) = 0 < ε. It is known that if n−1({n(a)}) = {a} and dZ(n(x), n(a)) = 0,
then x = a. Hence, there is no x ∈ X , with x 6= a, such that dZ(n(x), n(a)) = 0 < δ and
dY (f(x), f(a)) ≥ ε. Thus, given ε > 0, there exists a δ > 0 such that the condition (7) is
satisfied. Therefore, f is n-continuous at a.

It is important to highlight that in Definition 7 about generalized limit the condition
(4) disregards all points x ∈ X such that n(x) = n(a), that is, it considers only points
x ∈ X such that 0 < d(n(x), n(a)) < δ. The condition (4) is established in this way
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for that Definition 7 be a generalization in accordance with the definition of usual limit.
However, if condition (4) is modified to consider the points x ∈ X such that n(x) = n(a)

or d(n(x), n(a), generating a more specific concept of generalized limit, then it is easy to
see that statements (ii) and (iii) of Theorem 1 remain valid by removing the hypothesis
n−1({n(a)}) = {a}. Note that when n is the identity function, it becomes indifferent for
this case to consider condition (4) or its modification mentioned.

Example 3. As mentioned earlier, for functions f : R→ R given by

f(x) =


x, if x < 1

3, if x = 1

x+ 1, if x > 1

and n : R→ R given by

n(x) =

0, if x = 1

x− 2, if x 6= 1

we have that
glim

n(x)→n(1)

f(x) = 3 = f(1) ,

but n−1({n(1)}) = {1, 2} 6= {1}. Still, f is n-continuous at 1, because given ε > 0 and
taking δ = min{1, ε}, then the condition (7) is satisfied, this is, although |n(2)− n(1)| =
0, we still have that |f(2)− f(1)| = 0. However, note that f is not continuous at 1 in the
usual sense.

The previous example highlights that generalized continuity and usual continuity are
not equivalent definitions. Another important observation resulting from the previous
example is that the condition n−1({n(a)}) = {a} in Theorem 1 (iii) is not a necessary
condition for generalized continuity.

Lemma 1. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let a ∈ X . The function f

is n-continuous at a if, and only if, for every ε > 0, there exists a δ > 0 such that

f
(
n−1(BZ(n(a); δ))

)
⊂ BY (f(a); ε).

Demonstração. Let ε > 0. Since f is n-continuous at a, it follows that for this ε > 0,
there exists a δ > 0 such that

x ∈ X and dZ(n(x), n(a)) < δ implies dY (f(x), f(a)) < ε .
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Let y ∈ f (n−1(BZ(n(a); δ))). Then there exists x ∈ n−1(BZ(n(a); δ)) such that f(x) =

y. If x ∈ n−1(BZ(n(a); δ)), then n(x) ∈ BZ(n(a); δ). Hence, having dZ(n(x), n(a)) <

δ, it follow that dY (f(x), f(a)) < ε, which is equivalent to y = f(x) ∈ BY (f(a); ε).
Therefore, f (n−1(BZ(n(a); δ))) ⊂ BY (f(a); ε).

Conversely, let a ∈ X and let ε > 0. By hypothesis, for this ε > 0, there exists a δ > 0

such that f (n−1(BZ(n(a); δ))) ⊂ BY (f(a); ε). Hence, if x ∈ X and dZ(n(x), g(a)) < δ,
then n(x) ∈ BZ(n(a); δ) and x ∈ n−1(BZ(n(a); δ)). Thus, f(x) ∈ f (n−1(BZ(n(a); δ))) ⊂
BY (f(a); ε), resulting in dY (f(x), f(a)) < ε. Therefore, f is n-continuous at a.

Lemma 2. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let a ∈ X . The following
statements hold true:

(i) If f is n-continuous at a, then for every ε > 0, there exists a δ > 0 such that

BZ(n(a); δ) ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
.

(ii) If n is injective and for every ε > 0, there exists a δ > 0 such that

BZ(n(a); δ) ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
,

then f is n-continuous at a.

Demonstração. (i) Let ε > 0. Since f is n-continuous at a, it follows from Lemma 1 that
for this ε > 0, there exists a δ > 0 such that

f
(
n−1(BZ(n(a); δ))

)
⊂ BY (f(a); ε) . (8)

According to Proposition 4 (iii), the expression (8) is equivalent to

n−1(BZ(n(a); δ)) ⊂ f−1(BY (f(a); ε)) . (9)

It follows from Proposition 4 (i) that

BZ(n(a); δ) ∩ n(X) = n
(
n−1(BZ(n(a); δ)) ∩X

)
= n

(
n−1(BZ(n(a); δ))

)
. (10)

Using (10) and Proposition 1 (ii) in (9), it results that

BZ(n(a); δ) ∩ n(X) = n
(
n−1(BZ(n(a); δ))

)
⊂ n

(
f−1(BY (f(a); ε))

)
.
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Therefore, for every ε > 0, there exists a δ > 0 such that

BZ(n(a); δ) ∩ n(X) ⊂ n
(
f−1 (BY (f(a); ε))

)
.

(ii) Let ε > 0. By hypothesis, for this ε > 0, there exists a δ > 0 such that

BZ(n(a); δ) ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
. (11)

It results from (10) and (11) that

n
(
n−1(BZ(n(a); δ))

)
⊂ n

(
f−1(BY (f(a); ε))

)
. (12)

According to Proposition 4 (iii), the expression (12) is equivalent to

n−1(BZ(n(a); δ)) ⊂ n−1
(
n
(
f−1(BY (f(a); ε))

))
. (13)

Since n is injective by hypothesis, it follows from Proposition 3 (ii) that

n−1
(
n
(
f−1(BY (f(a); ε))

))
= f−1(BY (f(a); ε)) . (14)

It results from (13) and (14) that

n−1(BZ(n(a); δ)) ⊂ f−1(BY (f(a); ε)) (15)

and using Proposition 4 (iii), then (15) is equivalent to

f
(
n−1(BZ(n(a); δ))

)
⊂ BY (f(a); ε) . (16)

It results from (16) and Lemma 1 that f is n-continuous at a.

Theorem 2. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let a ∈ X . The function f is
n-continuous at a if, and only if, for every open subset U of Y (in metric sense) containing
f(a), there exists an open subset V of Z (in metric sense) containing n(a) such that

f(n−1(V )) ⊂ U .

Demonstração. Let U be an open subset of Y such that f(a) ∈ U . If U is an open subset
of Y , then f(a) is an interior point of U and consequently there exists ε > 0 such that

BY (f(a); ε) ⊂ U. (17)
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Since f is n-continuous at a, it follows from Lemma 1 that for this ε > 0, there exists a
δ > 0 such that

f
(
n−1(BZ(n(a); δ))

)
⊂ BY (f(a); ε) . (18)

Taking V = BZ(n(a); δ), we have that V is an open subset of Z containing n(a) and it
results from (17) and (18) that

f
(
n−1(V )

)
⊂ BY (f(a); ε) ⊂ U .

Conversely, let a ∈ X and ε > 0. Since the open ball BY (f(a); ε) is an open subset of
Y containing f(a), it follows from the hypothesis that there exists an open subset V of Z
containing n(a) such that

f(n−1(V )) ⊂ BY (f(a); ε) . (19)

If V is open subset of Z, then n(a) is an interior point of V and consequently there exists
a δ > 0 such that

BZ(n(a); δ) ⊂ V. (20)

Using Proposition 2 (i) and Proposition 1 (ii) consecutively in (20) and combining with
(19), we have that

f
(
n−1(BZ(n(a); δ))

)
⊂ f(n−1(V )) ⊂ BY (f(a); ε) . (21)

It results from (21) and Lemma 1 that f is n-continuous at a.

Theorem 3. Let X be a non-empty set, let (Y, dY ) and (Z, dZ) be metric spaces, let
f : X → (Y, dY ) and n : X → (Z, dZ) be functions and let a ∈ X . The following
statements hold true:

(i) If f is n-continuous at a, then for every open subset U of Y (in metric sense) con-
taining f(a), there exists an open subset V of Z (in metric sense) containing n(a)

such that
V ∩ n(X) ⊂ n(f−1(U))) .

(ii) If n is injective and for every open subset U of Y (in metric sense) containing f(a),
there exists an open subset V of Z (in metric sense) containing n(a) such that

V ∩ n(X) ⊂ n(f−1(U))) .
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then f is n-continuous at a.

Demonstração. (i) Let U be an open subset of Y such that f(a) ∈ U . Thus, there exists
ε > 0 such that

BY (f(a); ε) ⊂ U. (22)

Since f is n-continuous in a, it follows from Lemma 2 that for this ε > 0, there exists a
δ > 0 such that

BZ(n(a); δ) ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
. (23)

Taking V = BZ(n(a); δ), we have that V is an open subset of Z containing n(a) and
using Proposition 2 (i) and Proposition 1 (ii) consecutively in (22) together with (23) we
have that

V ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
⊂ n

(
f−1(U)

)
.

(ii) Let ε > 0. Since the open ball BY (f(a); ε) is an open subset of Y containing f(a), it
follows from hypothesis that there exists an open subset V of Z containing n(a) such that

V ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
. (24)

Since V is open there exists δ > 0 such that

BZ(n(a); δ) ⊂ V. (25)

It follows from (24) and (25) that

BZ(n(a); δ) ∩ n(X) ⊂ V ∩ n(X) ⊂ n
(
f−1(BY (f(a); ε))

)
. (26)

Thus, using (26), the hypothesis that n is injective and Lemma 2 (ii) results that f is
n-continuous at a.

4 Generalized continuity in topological context

Now, based on Theorem 2 and Theorem 3 are proposed the following three definitions
in the context of functions between topological spaces.

Definition 9. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . The function f is
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said to be n-continuous at a if for every U ∈ T Yf(a), there exists a V ∈ T Zn(a) such that

f(n−1(V )) ⊂ U . (27)

In this text the set of all functions from a set A to a topological space (B, T ) shall
be denoted by F(A,B, T ). Fixed a function of n : X → (Z, T Z), which from now on
will be named only by continuator, and fixed a topological space (Y, T Y ), then the set
of all functions from X to (Y, T Y ) that are n-continuous at a ∈ X shall be denoted by
Cn(a,X, Y ), that is,

Cn(a,X, Y ) = {f ∈ F(X, Y, T Y ) : f is n-continuous at a} . (28)

If we fix now a function f : X → (Y, T Y ), which from now on will be named only by
continuant, and fixed a topological space (Z, T Z), one can consider the set

Cf (a,X, Z) = {n ∈ F(X,Z, T Z) : f ∈ Cn(a,X, Y )} . (29)

It should be noted that in (28) and (29) the topologies in the codomains of the functions
are omitted in the notations of the sets, since this information is clear in the context.

n(a)

V

f ∈ Cn(a,X, Y )

∀U ∈ T Y
f(a)

, ∃V ∈ T Z
n(a)

such that f(n−1(V )) ⊂ U

(Z, T Z)

U
(Y, T Y )

f(n−1(V ))

f(a)

a

n−1(V )

X

f

n

Figure 2: generalized continuity

Example 4. Let X be a non-empty set, let (Y, T Y ) be topological space and let a ∈ X .
We have that any f : X → (Y, T Y ) is f -continuous at a. Indeed, given U ∈ T Yf(a), then
take V = U and it follows from Proposition 3 (iv) that

f(f−1(V )) = f(f−1(U)) ⊂ U.
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Therefore, f is f -continuous at a, that is, f ∈ Cf (a,X, Y ) and f ∈ Cf (a,X, Y ).

Example 5. Let (X, T X) and (Y, T Y ) be topological spaces, let f : (X, T X)→ (Y, T Y ),
id : (X, T X) → (X, T X) be functions and let a ∈ X . We have that f is continuous at
a if, and only if, f is id-continuous at a. Indeed, when considered a V ∈ T Xa , just note
that f(id−1(V )) = f(V ) to conclude, in this case, that the conditions (3) and (27) are
equivalent.

Example 6. Let R be equipped with usual topology, let a > 0 be a real number and let
id : R → R be the identity function and m : R → R the function given by m(x) = |x|.
For every open subset V of R containing m(a) = a, consider V + = V ∩ [0,∞) and
V − = {x ∈ R : − x ∈ V +}. Note that m−1(V ) = V + ∪ V −. Thus, given the open
subset U = (0,∞) of R containing id(a) = a, it results that for every open subset V of
R containing m(a) = a is valid that

id(m−1(V )) = id(V + ∪ V −) = V + ∪ V − 6⊂ (0,∞) = U.

Therefore, id is not m-continuous at a, that is, id /∈ Cm(a,R,R) and m /∈ Cid(a,R,R).

graf(id) graf(m)

a

m(a)

U = (0,∞)

m−1(V )

a

m−1(V )

V

id /∈ Cm(a,R,R)

∃U open containing id(a) ∈ R such that
∀V open containing m(a) ∈ R is valid that

id(m−1(V )) �⊂ U

id(a)

−a −a

id(m−1(V ))

−a

Figure 3: an example of non-generalized continuity

Proposition 13. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological
spaces, let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . The
following statements hold true:

(i) If f is constant function, then f ∈ Cn(a,X, Y ).

(ii) If n is constant function and f ∈ Cn(a,X, Y ), then f(X) ⊂ U , for all U ∈ T Yf(a).
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Demonstração. (i) Let U ∈ T Yf(a). Take any V ∈ T Zn(a). Note that f(n−1(V )) = {f(a)},
because f is a constant function and hence f(n−1(V )) = {f(a)} ⊂ U . Therefore,
f ∈ Cn(X, Y ).

(ii) Let U ∈ T Yf(a). Since f ∈ Cn(a,X, Y ), then there exists V ∈ T Zn(a) such that
f(n−1(V )) ⊂ U . On the other hand, since n is constant function and n(a) ∈ V , then
n−1(V ) = X . Thus, f(X) = f(n−1(V )) ⊂ U . Therefore, f(X) ⊂ U , for all U ∈ T Yf(a).

Definition 10. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . The function f is
said to be widely n-continuous at a if for every U ∈ T Yf(a), there exists a V ∈ T Zn(a) such
that

V ∩ n(X) ⊂ n(f−1(U)) . (30)

The set of all functions fromX to (Y, T Y ) that are widely n-continuous at a is denoted
by Wn(a,X, Y ), that is,

Wn(a,X, Y ) = {f ∈ F(X, Y, T Y ) : f is widely n-continuous at a} .

Fixed an continuant f : X → (Y, T Y ) and fixed a topological space (Z, T Z), one can
consider the set

Wf (a,X, Z) = {n ∈ F(X,Z, T Z) : f ∈ Wn(a,X, Y )}

f ∈ Wn(a,X, Y )

∀U ∈ T Y
f(a)

, ∃V ∈ T Z
n(a)

such that V ∩ n(X) ⊂ n(f−1(U))

U

(Y, T Y )

f(a)

a

f−1(U)

X

f

n
V

n(f−1)(U)

V ∩ n(X)

n(X)

(Z, T Z)

Figure 4: generalized continuity in the wide sense
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Example 7. Let X be a non-empty set, let (Y, T Y ) be topological space and let a ∈ X .
We have that any f : X → (Y, T Y ) is widely f -continuous at a. Indeed, given U ∈ T Yf(a),
then take V = U and it follows from Proposition 4 (i) that

V ∩ f(X) = U ∩ f(X) = f
(
f−1(U) ∩X

)
= f

(
f−1(U)

)
.

Therefore, f is widely f -continuous at a, that is, f ∈ Wf (a,X, Y ) and f ∈Wf (a,X, Y ).

Example 8. Let R be equipped with usual topology, let a > 0 be a real number and let
id : R → R be the identity function and m : R → R the function given by m(x) = |x|.
Given U a open subset of R containing id(a) = a, then V = U ∩ (0,∞) is a open subset
of R containing m(a) = a and V ⊂ m(U). Thus, it is valid that

V ∩m(R) = V ∩ [0,∞) = V ⊂ m(U) = m
(
id−1(U)

)
.

Hence, id is widely m-continuous at a, that is, id ∈ Wm(a,R,R) and m ∈Wid(a,R,R).

graf(id) graf(m)

id(a)

a

m(a)

U

id−1(U)

a

id−1(U)

V ∩m(R) m(id−1(U))

id ∈ Wm(a,R,R)

∀U open containing id(a) ∈ R, ∃V open containing m(a) ∈ R

such that
V ∩m(R) ⊂ m(id−1(U))

Figure 5: an example of generalized continuity in the wide sense

Proposition 14. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological
spaces, let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . If n
is a constant function, then f ∈ Wn(a,X, Y ).

Demonstração. Let U ∈ T Yf(a). Since n is constant function, then n(X) = {n(a)} =

n(f−1(U)). Taking any V ∈ T Zn(a), we have that V ∩ n(X) = {n(a)} = n(f−1(U)).
Therefore, f ∈ Wn(a,X, Y ).
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Definition 11. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . The function f is
said to be strictly n-continuous at a if n is injective and for every U ∈ T Yf(a), there exists
a V ∈ T Zn(a) such that

V ∩ n(X) ⊂ n(f−1(U)) .

The set of all functions from X to (Y, T Y ) that are strictly n- continuous at a, if n is
infective, is denoted by Sn(a,X, Y ), that is,

Sn(a,X, Y ) = {f ∈ F(X, Y, T Y ) : f is strictly n-continuous at a} .

Fixed an continuant f : X → (Y, T Y ) and fixed a topological space (Z, T Z), one can
consider the set

Sf (a,X, Z) = {n ∈ F(X,Z, T Z) : n is injective and f ∈ Wn(a,X, Y )} .

Theorem 4. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . The following
statements hold true:

(i) If f is n-continuous at a, then f is widely n-continuous at a.

(ii) If f strictly n-continuous at a, then f is n-continuous at a.

Demonstração. (i) Let U ∈ T Yf(a). Since f is n-continuous at a, then there exists a V ∈
T Zn(a) such that f(n−1(V )) ⊂ U and using Proposition 4 (iii) this inclusion is equivalent
to

n−1(V ) ⊂ f−1(U) . (31)

Taking this V ∈ T Zn(a), it follows from Proposition 4 (i) that

V ∩ n(X) = n
(
n−1(V ) ∩X

)
= n

(
n−1(V )

)
. (32)

Using Proposition 1 (ii), with the function n, in (31) and combining the result with (32),
we have to

V ∩ n(X) = n
(
n−1(V )

)
⊂ n

(
f−1(U)

)
.

Therefore, f is widely n-continuous at a.
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(ii) Let U ∈ T Yf(a). Since f is strictly n- continuous at a by hypothesis, then there ex-
ists a V ∈ T Zn(a) such that V ∩ n(X) ⊂ n (f−1(U)), which is equivalent according to
expression (32) to

n
(
n−1(V )

)
⊂ n

(
f−1(U)

)
. (33)

According to Proposition 4 (iii), the expression (33) is equivalent to

n−1(V ) ⊂ n−1
(
n
(
f−1(U)

))
. (34)

Since n is injective, since f is strictly n-continuous at a by hypothesis, it follows from
Proposition 3 (ii) that

n−1
(
n
(
f−1(U)

))
= f−1(U) . (35)

It results from (34) and (35) that n−1(V ) ⊂ f−1(U) and using Proposition 4 (iii), this
inclusion is equivalent to

f
(
n−1(V )

)
⊂ U .

Therefore, f is n-continuous at a.

Corollary 1. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . If f is a constant
function, then f ∈ Wn(a,X, Y ).

Demonstração. It follows from Proposition 13 (i) and Theorem 4 (i).

From Theorem 4 we conclude that Cn(a,X, Y ) ⊂ Wn(a,X, Y ) and if n is injec-
tive we also have that Sn(a,X, Y ) ⊂ Cn(a,X, Y ). On the other hand, Sn(a,X, Y ) =

Wn(a,X, Y ) by definition, in the case that n is injective. In summary, for every continu-
ator n is valid that

Cn(a,X, Y ) ⊂ Wn(a,X, Y ) (36)

and if n is a injective continuator, then is valid that

Sn(a,X, Y ) = Cn(a,X, Y ) = Wn(a,X, Y ) ,

that is, for injective continuators the concepts of generalized continuity and wide gener-
alized continuity are coincident.
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Also it follows from Theorem 4 that for any continuant f fixed is valid that

Sf (a,X, Z) ⊂ Cf (a,X, Z) ⊂Wf (a,X, Z) . (37)

Example 9. We already know that any continuous function at a point a is id- continuous
at a and hence, from Theorem 4, is also widely id-continuous at a and consequently
strictly id-continuous at a, since id is injective.

Example 10. Consider a set X = {a, b}, with a 6= b, equipped with the Sierpinski
topology S = {∅, {a}, X}. Consider also the identity function id : X → (X,S) given
by id(a) = a and id(b) = b and consider the permutation function p : X → (X,S)

given by p(a) = b and p(b) = a. Note that Sp(b) = Sid(a) = Sa = {{a}, X} and
Sp(a) = Sid(b) = Sb = {X}. Since U = X is unique in Sid(b), take V = {a} ∈ Sp(b) and
hence

id
(
p−1(V )

)
= id

(
p−1({a})

)
= {b} ⊂ X = U .

Therefore, id is p-continuous at b and consequently id is widely p-continuous at b.
Moreover, taking U = {a} ∈ Sid(a), then there exist only V = X ∈ Sp(a) and

V ∩ p(X) = X 6⊂ {b} = p({a}) = p
(
id−1(U)

)
.

Therefore id is not widely p-continuous at a and consequently id is not p-continuous at a.
Note that if p /∈Wid(a,X,X), then p /∈ Sid(a,X,X), although p is injective.

Now, we will present examples for which the inclusions given in (36) and (37) are
proper inclusions.

Example 11. Let R be equipped with usual topology, let a ∈ R+ and let id : R→ R be the
identity function and m : R→ R the function given by m(x) = |x|. As seen in Examples
8 and 6, we have that id is widely m-continuous at a, but id is not m-continuous at a. In
summary, Cm(a,R,R) $ Wm(a,R,R) and Cid(a,R,R) $ Wid(a,R,R).

Example 12. Let R be equipped with usual topology, a ∈ R+ and let m : R → R be
the function given by m(x) = |x|. Note that m is widely m-continuous at a and m is
m-continuous at a, but m is not strictly m-continuous at a, because m is not injective.
Thus, m /∈ Sm(a,R,R), but m ∈ Cm(a,R,R). Therefore, Sm(a,R,R) $ Cm(a,R,R).

To assist the next theorem, we present requirements related to nets (see [1] and [13]).

Definition 12. A set Λ, equipped with a order relation ≤, is called directed set if the
following conditions are satisfied:
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(a) λ ≤ λ, for all λ ∈ Λ.

(b) Given λ, µ, ν ∈ Λ such that λ ≤ µ and µ ≤ ν, then λ ≤ ν.

(c) Given λ, µ ∈ Λ, there exists ν ∈ Λ such that λ ≤ ν and µ ≤ ν.

A directed set Λ equipped with a order relation ≤ is denoted in this text by (Λ,≤).

Example 13. The set of natural numbers N equipped with the usual order relation is a
directed set.

Example 14. Let (X, T ) be a non-empty topological space and let a ∈ X . Consider the
order relation on P(X) given by

A ≤ B if, and only if, A ⊃ B. (38)

The open neighbourhood basis Ta = {U ∈ T : a ∈ U} equipped with order relation ≤
given by (38) is a directed set.

Definition 13. Let X be a non-empty set and let (Λ,≤) be a directed set. Any function
of form x : (Λ,≤)→ X is called net from Λ to X (or net in X) and denoted by (xλ)λ∈Λ,
where xλ = x(λ).

Definition 14. Let (X, T ) be a topological space and let a ∈ X . A net (xλ)λ∈Λ in X is
said to be convergent to a if, for every U ∈ Ta, there exists a λ0 ∈ Λ such that

λ ∈ Λ and λ0 ≤ λ implies xλ ∈ U .

A net (xλ)λ∈Λ in X converging to a is denoted by xλ → a.

Example 15. Every sequence (xn)n∈N in X is a net in X , and the convergence of nets
generalizes the convergence of sequences.

Example 16. Let (X, T ) be a topological space and let a ∈ X . Consider Ta equipped
with order relation ≤ given by (38). If we choose a xU ∈ U , for every U ∈ Ta, then
(xU)U∈Ta is a net in X that converges to a.

Theorem 5. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions and let a ∈ X . The function f
is n-continuous at a if, and only if, for every net (xλ)λ∈Λ in X , with n(xλ) → n(a), it is
valid that f(xλ)→ f(a).
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Demonstração. Let (xλ)λ∈Λ a net in X such that n(xλ) → n(a). Let U ∈ T Yf(a). Since
f ∈ Cn(a,X, Y ) by hypothesis, there exists a V ∈ T Zn(a) such that f(n−1(V )) ⊂ U . Since
n(xλ) → n(a), there exists λ0 ∈ Λ such that n(xλ) ∈ V , for all λ ≥ λ0, which is equiv-
alent to xλ ∈ n−1(V ), for all λ ≥ λ0. This implies that f(xλ) ∈ f(n−1(V )) ⊂ U , for
all λ ≥ λ0. Therefore, given U ∈ T Yf(a), there exists λ0 ∈ Λ such that f(xλ) ∈ U , for all
λ ≥ λ0, that is, f(xλ)→ f(a).

Conversely, we want to show that f is n-continuous at a. Suppose that f /∈ Cn(a,X, Y ).
Then there exists U ∈ T Yf(a) such that f(n−1(V )) 6⊂ U , for all V ∈ T Zn(a), or equivalently,
n−1(V ) 6⊂ f−1(U), for all V ∈ T Zn(a). Thus, n−1(V ) \ f−1(U) 6= ∅, for all V ∈ T Zn(a).
Consider the non-empty family C = {n−1(V ) \ f−1(U) ∈ P(X) : V ∈ T Zn(a)}. Using
Axiom of Choice, there exists a choice function g : C →

⋃
C such that g(µ) ∈ µ, for

all µ ∈ C. Consider the function h : T Zn(a) → C given by h(V ) = n−1(V ) \ f−1(U) and
note that

⋃
C ⊂ X . Hence, x : T Zn(a) → X given by x = g ◦ h is a net in X such that

xV ∈ n−1(V ) \ f−1(U), for all V ∈ T Zn(a). Since n(xV ) ∈ V , for all V ∈ T Zn(a), then
n(xV ) → n(a), because given V0 ∈ T Zn(a), it is valid that n(xV ) ∈ V0, for all V ≥ V0

(or V ⊂ V0). On the other hand, xV /∈ f−1(U), for all V ∈ T Zn(a), which is equivalent
to f(xV ) /∈ U , for all V ∈ T Zn(a), and this implies f(xV ) 6→ f(a). Thus, there exists a
net (xV )V ∈T Z

n(a)
in X such that n(xV ) → n(a), but f(xV ) 6→ f(a), which contradicts the

hypothesis. Therefore, f is n-continuous at a.

Definition 15. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces
and let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions. The function f is n-
continuous (widely n-continuous or strictly n-continuous) if f is n-continuous at a (widely
n-continuous at a or strictly n-continuous at a, respectively), for all a ∈ X .

The set of all functions fromX to (Y, T Y ) that are n-continuous (widely n-continuous
or strictly n-continuous) is denoted by Cn(X, Y ) (Wn(X, Y ) or Sn(X, Y ), respectively).

Fixed an continuant f : X → (Y, T Y ) and fixed a topological space (Z, T Z), we can
consider the following sets:

Cf (X,Z) = {n ∈ F(X,Z, T Z) : f ∈ Cn(X, Y )} =
⋂
a∈X

Cf (a,X, Z) ,

Wf (X,Z) = {n ∈ F(X,Z, T Z) : f ∈ Wn(X, Y )} =
⋂
a∈X

Wf (a,X, Z)

and
Sf (a,X, Z) = {n ∈Wf (X,Z) : n is injective} =

⋂
a∈X

Sf (a,X, Z) .
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Given a topological space (X, T X) and a subsetA ofX , we can equipAwith topology
T A = {U ∩ A : U ∈ T X}. The pair (A, T A) is called topological subspace of (X, T X)

and the topology T A is called induced topology by T X .

Theorem 6. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces
and let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions. The function f is widely
n-continuous if, and only if, n(f−1(U)) ∈ T n(X), for all U ∈ T Y .

Demonstração. Let U ∈ T Y and let z ∈ n(f−1(U)). Then there exists a ∈ f−1(U) such
that n(a) = z and f(a) ∈ U . Since, by hypothesis, f ∈ Wn(X, Y ) and, in particular, f is
widely n-continuous at a, then there exists Vz ∈ T Zn(a) such that Vz ∩ n(X) ⊂ n(f−1(U)).
Note that Wz = Vz ∩ n(X) is such that Wz ∈ T n(X). It follows that n(f−1(U)) =⋃
z∈n(f−1(U))

Wz and therefore n(f−1(U)) ∈ T n(X).

Conversely, let a ∈ X and let U ∈ T Yf(a). By hypothesis, if follows that n(f−1(U)) ∈
T n(X) and since T n(X) is a induced topology, then there exists V ∈ T Z such that
n(f−1(U)) = V ∩n(X). Note that if f(a) ∈ U , then a ∈ f−1(U) and n(a) ∈ n(f−1(U)),
that is, n(a) ∈ V and V ∈ T Zn(a). Thus, given U ∈ T Yf(a), there exists V ∈ T Zn(a) such that
V ∩ n(X) = n(f−1(U)), which is equivalent to f ∈ Wn(a,X, Y ). Since a is arbitrary,
then f ∈ Wn(a,X, Y ), for all a ∈ X . Therefore, f is widely n-continuous.

Theorem 7. LetX be a non-empty set and let (Y, T Y ), (Z, T Z) and (R, T R) be topologi-
cal spaces. Let a ∈ X and let f : X → (Y, T Y ),m : X → (Z, T Z) and n : X → (R, T R)

be functions. The following statements hold true:

(i) If f ∈ Cm(a,X, Y ) and m ∈ Cn(a,X, Z), then f ∈ Cn(a,X, Y ).

(ii) If f ∈ Cm(a,X, Y ) and m ∈ Sn(a,X, Z), then f ∈ Sn(a,X, Y ).

(iii) If f ∈ Cm(a,X, Y ) and m ∈ Wn(a,X, Z), then f ∈ Wn(a,X, Y ).

Demonstração. (i) Let U ∈ T Yf(a). Since f ∈ Cm(a,X, Y ), then there exists V ∈ T Zm(a)

such that f(m−1(V )) ⊂ U and, using Proposition 4 (iii), this is equivalent to m−1(V ) ⊂
f−1(U). Similarly, since m ∈ Cn(a,X, Z), then there exists W ∈ T Rn(a) such that
n−1(W ) ⊂ m−1(V ). Then n−1(W ) ⊂ m−1(V ) ⊂ f−1(U) and again using Proposi-
tion 4 (iii) we have that f(n−1(W )) ⊂ U . Therefore f ∈ Cn(a,X, Y ).

(ii) According to Theorem 4 (ii), if m ∈ Sn(a,X, Z), then m ∈ Cn(a,X, Z). Hence,
using the hypotheses and the previous item (i), it is concluded that f ∈ Cn(a,X, Y ) and
consequently, using Theorem 4 (ii), f ∈ Wn(a,X, Y ). In addition, n is injective, since
n ∈ Sm(a,X, Z). Therefore, f ∈ Sn(a,X, Y ).
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(iii) Let U ∈ T Yf(a). Since f ∈ Cm(a,X, Y ), then there exists V ∈ T Zm(a) satisfying the
condition m−1(V ) ⊂ f−1(U). Since m ∈ Wn(a,X, Z), then there exists W ∈ T Rn(a) such
thatW∩n(X) ⊂ n(m−1(V )). Remember, from Proposition 4 (i) is valid thatW∩n(X) =

n(n−1(W ) ∩ X) = n(n−1(W )). Thus, n(n−1(W )) ⊂ n(m−1(V )). It follows from
Proposition 1 (ii) that if m−1(V ) ⊂ f−1(U), then n(m−1(V )) ⊂ n(f−1(U)). Thus,
W ∩ n(X) = n(n−1(W )) ⊂ n(m−1(V )) ⊂ n(f−1(U)). Therefore, f ∈ Wn(a,X, Y ).

Corollary 2. LetX be a non-empty set and let (Y, T Y ), (Z, T Z) and (R, T R) be topologi-
cal spaces. Let a ∈ X and let f : X → (Y, T Y ),m : X → (Z, T Z) and n : X → (R, T R)

be functions. The following statements hold true:

(i) If f ∈ Sm(a,X, Y ) and m ∈ Sn(a,X, Z), then f ∈ Sn(a,X, Y ).

(ii) If f ∈ Sm(a,X, Y ) and m ∈ Cn(a,X, Z), then f ∈ Cn(a,X, Y ).

(iii) If f ∈ Sm(a,X, Y ) and m ∈ Wn(a,X, Z), then f ∈ Wn(a,X, Y ).

Demonstração. The statements follow from Theorem 7 combined with Theorem 4.

Example 17. Consider a set X = {a, b}, with a 6= b, equipped with the Sierpin-
ski topology S = {∅, {a}, X}. Consider also the identity function id : X → (X,S),
the permutation function p : X → (X,S) and the function c : X → (X,S) given by
c(a) = c(b) = a. Note that Sa = {{a}, X}. From Proposition 14, we have that
id ∈ Wc(a,X,X). Moreover, we have {a} ∈ Sa, but id(X) = X 6⊂ {a}. Hence,
using contrapositive of item ii) of Proposition 13, it follows that id /∈ Cc(a,X,X).
Moreover, using Proposition 13 (i), we have that c ∈ Cp(a,X,X) and, consequently,
c ∈ Sp(a,X,X), since p is injective. We know from Example 10 that id /∈ Wp(a,X,X).
Therefore, id ∈ Wc(a,X,X) \ Cc(a,X,X) and c ∈ Sp(a,X,X), but id /∈ Wp(a,X,X).

The next result relates generalized continuity in the wide and strict sense with open
functions and usual continuity, respectively. For this, note that consideringX a non-empty
set, (W, T W ) a topological space and h : X → (W, T W ) a function, then the family of
subsets of X given by

T h = {h−1(U) ∈ P(X) : U ∈ T W}

is a topology in X , called topology induced by function h. Consider also S and T being
topologies equipping the set X . The topology S is weaker (coarser or smaller) than the
topology T if, and only if, S ⊂ T .
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Theorem 8. Let (X, T X), (Y, T Y ) and (Z, T Z) be topological spaces and let f : X →
(Y, T Y ) and n : X → (Z, T Z) be functions. The following statements hold true:

(i) If f ∈ Wn(X, Y ) and T X ⊂ T f , then n : (X, T X)→ (n(X), T n(X)) is open.

(ii) If f ∈ Sn(X, Y ) and T n ⊂ T X , then f : (X, T X)→ (Y, T Y ) is continuous.

Demonstração. (i) Let A ∈ T X . By hypothesis, we have that T X ⊂ T f , then A ∈ T f

and therefore there exists U ∈ T Y such that A = f−1(U). Since f ∈ Wn(X, Y ), it
follows from Theorem 6 that n(A) = n(f−1(U)) ∈ T n(X), that is, n(A) is open subset of
the image n(X). Therefore, n : (X, T X)→ (n(X), T n(X)) is an open function.

(ii) Let U ∈ T Y . Since f ∈ Sn(X, Y ), then n is injective and f ∈ Wn(X, Y ). It
follows from Theorem 6 that n(f−1(U)) ∈ T n(X), that is, there exists W ∈ T Z such that
n(f−1(U)) = W ∩ n(X). Since n is injective, using Proposition 3 (ii) and Proposition 2
(iii), we have that

f−1(U) = n−1
(
n(f−1(U)

)
= n−1(W ∩ n(X))

= n−1(W ) ∩ n−1(n(X)) = n−1(W ) ∩X = n−1(W ) .

Since n−1(W ) ∈ T n and T n ⊂ T X , then f−1(U) ∈ T X . Therefore, f is continuous.

5 Continuity in the sense of Kupka

The concept of similar functions was presented by Kupka in [5]. Subsequently, Kupka
renames this concept for the term generalized continuity of a function with respect to
another function (see [6], [7] and [8]). Now, the notion of similar functions or generalized
continuity in the sense of Kupka will be presented and then a brief analysis will be made
to point out aspects in which concept given by Kupka differs to the concept of generalized
continuity proposed in this article. Some examples that show that the two concepts are
not equivalent will also be presented.

Definition 16. Let (X, T X), (Y, T Y ) and (Z, T Z) be topological spaces, let a ∈ X and
let f : (X, T X) → (Y, T Y ) and n : (X, T X) → (Z, T Z) be functions. The function f is
said to be n-continuous at a in the sense of Kupka if for every net (xλ)λ∈Λ converging to
a, the following holds:

If the net (n(xλ))λ∈Λ converges in Z, then the net (f(xλ))λ∈Λ converges in Y. (39)
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Here we point out the first visible difference between the continuity in the sense of
Kupka and the generalized continuity developed from the idea of generalized limit. The
concept given by Kupka requires topological structure in the domain of functions contin-
uator n and continuant f . On the other hand, for the generalized continuity proposed in
this article we do not need topological structure (or any other structure) in these domains.

The concept of generalized continuity proposed by this article can be characterized
by nets, as proved in Theorem 5, and this allows a more accurate comparison between
the two concepts of continuity mentioned. Note that for continuity in the sense of Kupka,
it is required that the nets given in the domain of functions n and f have convergence
to the point a of reference, however it is only required that if there is convergence of
the respective nets mapped in the codomain of the continuator n, then there should be
convergence of the respective nets mapped in the codomain of the continuant f , without
any determination for which points these nets should converge. In the concept of gen-
eralized continuity proposed here (via its characterization given by Theorem 5) there is
no requirement of convergence of the nets given in the domain of n and f (since there
is no topological structure in the domain), but there is the explicit requirement that if the
respective nets mapped in the codomain of the continuator n converge to n(a), then the
respective nets mapped in the codomain of the continuant f should converge to f(a).

Kupka also presented a second notion of continuity in [5], in which a topological
structure is not required in the domain shared by continuator and continuant, but the con-
dition (39) is still maintained (i.e., only free convergence is required for the nets mapped
by continuator and continuant), unlike the notion of generalized continuity presented in
this article, in which the mapped nets converge to specified points, namely, n(a) and f(a).

Definition 17. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces
and let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions. The function f is said to
be n-constant on X (in the sense of Kupka) if for every net (xλ)λ∈Λ in X , the following
holds:

If the net (n(xλ))λ∈Λ converges in Z, then the net (f(xλ))λ∈Λ converges in Y.

The notion given by Kupka in Definition 17 generates a subclass of functions of the
class of the functions that satisfy the notion given in Definition 16, because if f is n-
constant, then condition (39) is satisfied by a family of nets in X that include the nets in
X that converge to a. Therefore, the function f is also n-continuous at a in the sense of
Kupka.

Let h : (X, T X)→ (Y, T Y ) be a function and let a ∈ X . Denote the set of all nets in
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X by N(X) and consider the its following subsets:

Na(X) = {(xλ)λ∈Λ ∈ N(X) : xλ → a} ,

Nh(X) = {(xλ)λ∈Λ ∈ N(X) : h(xλ) is convergent}

and
Nh
a(X) = {(xλ)λ∈Λ ∈ N(X) : h(xλ)→ h(a)} .

Note that Nh
a(X) is a subset of Nh(X).

Consider a continuant f : (X, T X)→ (Y, T Y ) and continuator n : (X, T X)→ (Z, T Z).
The set of all functions from (X, T X) to (Y, T Y ) that are n-continuous at a in the sense
of Kupka will be denoted here by Kn(a,X, Y ). Moreover, the set of all functions from
(X, T X) to (Y, T Y ) that are n-constant onX will be denoted here by cKn(X, Y ). In other
terms,

f ∈ cKn(X, Y ) ⇔ Nn(X) ⊂ Nf (X) ,

f ∈ Kn(a,X, Y ) ⇔ Na(X) ∩Nn(X) ⊂ Nf (X)

and
f ∈ Cn(a,X, Y ) ⇔ Nn

a(X) ⊂ Nf
a(X) .

Example 18. Consider a set X = {a, b}, with a 6= b, and consider the Sierpinski topol-
ogy S = {∅, {a}, X}, the discrete topology D = {∅, {a}, {b}, X} and the trivial topol-
ogy T = {∅, X}. Take f : (X,S) → (X,D) given by f(a) = a and f(b) = b, and
take n : (X,S) → (X,S) given by n(a) = a and n(b) = b. We have that Df(a) =

{{a}, X} = Sn(a). Hence, given U ∈ Df(a), take V = U ∈ Sn(a) and consequently
f(n−1(V )) ⊂ U . Thus, f ∈ Cn(a,X,X). Now, consider the alternated sequence
(xn)n∈N = (a, b, a, b, a, b, . . .) in X . We have that xn → b (i.e. n(xn) → n(b)) with
respect the topology S, but (xn)n∈N = (f(xn))n∈N is not convergent with respect the
topology D. Since (xn)n∈N ∈ Nn(X) and (xn)n∈N /∈ Nf (X), then, f /∈ cKn(X,X).
Therefore, Cn(a,X,X) 6⊂ cKn(X,X).

Example 19. Consider a set X = {a, b}, with a 6= b, and consider the following
topologies: S = {∅, {a}, X}, R = {∅, {b}, X} and D = {∅, {a}, {b}, X}. Take
f : (X,R) → (X,D) given by f(a) = a and f(b) = b, and take n : (X,R) → (X,S)

given by n(a) = a and n(b) = b. As in the previous example, we have have that
Df(a) = {{a}, X} = Sn(a) and therefore f ∈ Cn(a,X,X). Considering the alter-
nated sequence (xn)n∈N = (a, b, a, b, a, b, . . .) in X , we have that xn → a with re-
spect the topology R and xn → b (i.e. n(xn) → n(b)) with respect the topology S,
but (xn)n∈N = (f(xn))n∈N is not convergent with respect the topology D. Hence, since
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(xn)n∈N ∈ Na(X) ∩Nn(X) and (xn)n∈N /∈ Nf (X), then, f /∈ Kn(a,X,X). Therefore,
Cn(a,X,X) 6⊂ Kn(a,X,X).

Example 20. Consider a set X = {a, b}, with a 6= b, equipped with the Sierpinski
topology S = {∅, {a}, X}. Consider also the identity function id : (X,S) → (X,S)

and the permutation function p : (X,S) → (X,S) given by p(a) = b and p(b) = a.
Let (xλ)λ∈Λ ∈ Na(X). Since U = X is unique in Sb, then p(xλ) ∈ U , for all λ ∈ Λ.
Therefore, p(xλ) → b with respect to the topology S and (xλ)λ∈Λ ∈ Np(X). Of course,
xλ → a with respect to the topology S, then (xλ)λ∈Λ ∈ Nid(X). Thus, Na(X)∩Np(X) ⊂
Nid(X), that is, id ∈ Kp(a,X,X). We have already observed in Example 10 that id /∈
Cp(a,X,X). Therefore, Kp(a,X,X) 6⊂ Cp(a,X,X).

Example 21. It is immediate to verify that any continuous function f : (X, T X) →
(Y, T Y ) satisfies f ∈ Cid(a,X, Y ) ∩ Kid(a,X, Y ).

The previous examples show that the concept of generalized continuity proposed in
this text is not a proper subclass of the concept of continuity in the sense of Kupka and the
latter also is not a proper subclass of the first. Moreover, these concepts are not equivalent,
although they intersect.

The following proposition establishes some conditions in which there is some rela-
tionship between the concept of continuity given by Kupka and the concept of generalized
continuity proposed here.

Proposition 15. Let (X, T X), (Y, T Y ) and (Z, T Z) be topological spaces and consider
n : (X, T X)→ (Z, T Z) a function. The following statements hold true:

(i) cKn(X, Y ) ⊂
⋃
a∈X

Kn(a,X, Y ).

(ii) If f ∈ cKn(X, Y ) and Nf (X) = Nf
a(X), then f ∈ Cn(a,X, Y ).

(iii) If f ∈ Cn(a,X, Y ) and Nn(X) = Nn
a(X), then f ∈ cKn(X, Y ).

(iv) If Nn(X) = Nn
a(X) and (Z, T Z) is Hausdorff space, then n is a constant function.

Demonstração. (i) Let a ∈ X . If f ∈ cKn(X, Y ), then Nn(X) ⊂ Nf (X). Conse-
quently Na(X) ∩ Nn(X) ⊂ Nn(X) ⊂ Nf (X) and hence f ∈ Kn(a,X, Y ). Thus,
cKn(X, Y ) ⊂ Kn(a,X, Y ), for each a ∈ X . Therefore, cKn(X, Y ) ⊂

⋃
a∈X

Kn(a,X, Y ).

(ii) If f ∈ cKn(X, Y ), then Nn(X) ⊂ Nf (X). It is immediate that Nn
a(X) ⊂ Nn(X)

and since by hypothesis Nf (X) = Nf
a(X), it follows that Nn

a(X) ⊂ Nf
a(X). Therefore,

f ∈ Cn(a,X, Y ).
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(iii) If f ∈ Cn(a,X, Y ), then Nn
a(X) ⊂ Nf

a(X). Since by hypothesis Nn(X) = Nn
a(X)

and as Nf
a(X) ⊂ Nf (X), it follows that Nn(X) ⊂ Nf (X). Therefore, f ∈ cKn(X, Y ).

(iv) Let b ∈ X such that b 6= a. Taking the constant sequence (xk)k∈N = (b, b, b, b, b . . .), it
follows that (n(xk))k∈N = (n(b), n(b), n(b), n(b), n(b) . . .) is such that n(xk)→ n(b) and
(xk)k∈N ∈ Nn(X). Hence, using hypothesis, we have that (xk)k∈N ∈ Nn

a(X) and there-
fore n(xk) → n(a). Since Z is Hausdorff space, then the convergent sequence (xk)k∈N
has a single limit, that is, n(a) = n(b). Therefore, n(a) = n(b), for all b ∈ X , that is, n is
a constant function.

6 Topological invariants and generalized continuity

In this section it is verified that compactness and connectedness are adequately pre-
served through generalized continuity.

Let X be a set. A collection C is said to be a cover of set X if

X ⊂
⋃
U∈C

U .

A collection D is said to be a subcover of a cover C of X if D ⊂ C and D is a cover of X .

Definition 18. Let (X, T X) be a topological space and let K be a subset of X . A col-
lection C is said to be a open cover of set K with respect to T X if C is a cover of K and
C ⊂ T X .

Definition 19. Let (X, T X) be a topological space and let K be a subset of X . The set
K is said to be compact with respect to T X if each open cover C of K with respect to T X

has a finite subcover.

In other words, a subset K of a topological space (X, T X) is called compact if for
every open cover C of K with respect to T X , there exists a finite subset F of C such that

K ⊂
⋃
U∈F

U .

Theorem 9. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions. If f é n-continuous and n(X)

is compact with respect to T Z , then f(X) is compact with respect to T Y .
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Demonstração. Let C be a open cover of f(X) with respect to T Y . By hypothesis
f ∈ Cn(X, Y ), then f ∈ Cn(a,X, Y ), for all a ∈ X . Since f(X) ⊂

⋃
U∈C

U and C ⊂ T Y ,

then for each a ∈ X , there exists Ua ∈ C such that f(a) ∈ Ua and since f ∈ Cn(a,X, Y ),
it follows that there exists Va ∈ T Zn(a) such that f(n−1(Va)) ⊂ Ua. Consider D being
the collection of all open sets Va indexed by a ∈ X and previously described. It is easy
to see that n(X) ⊂

⋃
a∈X

Va and therefore the collection D is a open cover of n(X) with

respect to T Z . Since n(X) is compact with respect to T Z , then the open coverD of n(X)

has a finite subcover, that is, there is a finite amount of points a1, . . . , ak ∈ X such that

n(X) ⊂
k⋃
i=1

Vai . It follows from Proposition 3 (iii) and Proposition 2 (i) and (ii) that

X = n−1(n(X)) ⊂ n−1

(
k⋃
i=1

Vai

)
=

k⋃
i=1

n−1(Vai)

and this combined with Proposition 1 (ii) and (iii) gives us

f(X) ⊂ f

(
k⋃
i=1

n−1(Vai)

)
=

k⋃
i=1

f(n−1(Vai)) ⊂
k⋃
i=1

Uai .

Thus, since Ua1 , . . . , Uak ∈ C and f(X) ⊂
k⋃
i=1

Uai , then C has a finite subcover. There-

fore, f(X) is compact with respect to T Y .
The conclusion of Theorem 9 does not remain valid if we replace the hypothesis that

the continuant f is n-continuous by the hypothesis of it to be widely n-continuous. In
fact, considering as continuant the identity function id : R → R, with R equipped with
the usual topology, and considering as continuator a constant function n(x) = c, for
all x ∈ R, we have by Proposition 14 that id ∈ Wn(X, Y ). In addition n(R) = {c} is
compact, because it is a finite set, but id(R) = R is not compact, because it is not bounded
set.

Theorem 10. Let X be a non-empty set, let R be equipped with usual topology, let
(Z, T Z) be a topological space, let f : X → R and n : X → (Z, T Z) be functions.
If f is n-continuous and n(X) is compact with respect to T Z , then f assumes maximum
value and minimum value.

Demonstração. It follows from Theorem 9 that f(X) is compact. Therefore, f(X) is
bounded subset of R and consequently such subset admits supremum and infimum, de-
noted respectively by sup f and inf f . For each k ∈ N, there exists a xk ∈ X such
that sup f − 1

k
< f(xk) ≤ sup f . Thus, there exists a sequence (xk)k∈N in X such
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as 0 ≤ sup f − f(xk) < 1
k
. Because n(X) is compact, it follows that the sequence

(net) (n(xk))k∈N admits a subsequence (subnet) (n(xki))i∈N, which is convergent to some
z ∈ n(X). Since z ∈ n(X), then there exists a ∈ X such that n(a) = z. Then,
n(xki)→ n(a) and as f is n-continuous, follows from Theorem 5 that f(xki)→ f(a). On
the other hand, since 0 ≤ sup f − f(xki) <

1
ki

and 1
ki
→ 0, we have that f(xki)→ sup f .

It follows from the uniqueness of limit in R that f(a) = sup f , that is, sup f ∈ f(X) and
therefore f assumes maximum value. Similarly, it is concluded that f assumes minimum
value.

Definition 20. Let (X, T X) be a topological space and let C be a subset of X .

• The set X is said to be disconnected with respect to T X , if there exist A,B ∈ T X

such that they are disjoint non-empty sets and A ∪B = X .

• The set X is said to be connected with respect to T X , if it is not disconnected with
respect to T X .

• The subset C of X is said to be connected with respect to T X if it as topological
subspace of (X, T X) is connected with respect to induced topology by T X .

Theorem 11. Let X be a non-empty set, let (Y, T Y ) and (Z, T Z) be topological spaces,
let f : X → (Y, T Y ) and n : X → (Z, T Z) be functions. If f is n-continuous and n(X)

is connected with respect to T Z , then f(X) is connected with respect to T Y .

Demonstração. LetA,B ∈ T f(X) such thatA∩B = ∅, A∪B = f(X) andA 6= ∅. Since
by hypothesis f is n-continuous, then for each a ∈ f−1(A), there exists a Va ∈ T Zn(a) such
that f(n−1(Va)) ⊂ A, which is equivalent to n−1(Va) ⊂ f−1(A). Similarly, for each
b ∈ f−1(B), there exists a Wb ∈ T Zn(b) such that n−1(Wb) ⊂ f−1(B). Consider the sets

V = (
⋃

a∈f−1(A)

Va) ∩ n(X) and W = (
⋃

b∈f−1(B)

Wb) ∩ n(X)

We have that V ∈ T n(X) and W ∈ T n(X). It follows from Proposition 2 (ii) and (iii) and
Proposition 3 (iii) that

n−1(V ) = n−1

(
⋃

a∈f−1(A)

Va) ∩ n(X)

 = n−1

 ⋃
a∈f−1(A)

Va

 ∩ n−1(n(X))

= (
⋃

a∈f−1(A)

n−1(Va)) ∩X =
⋃

a∈f−1(A)

n−1(Va) ⊂ f−1(A)
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and given any x ∈ f−1(A), then there exists a Vx ∈ T Zn(x) such that n−1(Vx) ⊂ f−1(A)

and consequently n(x) ∈ Vx ∩ n(X) ⊂ V and x ∈ n−1(V ), that is, f−1(A) ⊂ n−1(V ).
Therefore n−1(V ) = f−1(A) and, similarly, n−1(W ) = f−1(B). Thus, it follows from
Proposition 2 (iii), Proposition 1 (iv) and Proposition 3 (iv) that

f(n−1(V ∩W )) = f(n−1(V ) ∩ n−1(W )) ⊂ f(n−1(V )) ∩ f(n−1(W ))

= f(f−1(A)) ∩ f(f−1(B)) ⊂ A ∩B = ∅ ,

that is, f(n−1(V ∩W )) = ∅, which is equivalent by Proposition 1 (i) to n−1(V ∩W ) = ∅
and this in turn is equivalent to n(n−1(V ∩W )) = ∅. Hence, using Proposition 4 (i) we
have that

V ∩W = (V ∩W ) ∩ n(X) = n(n−1(V ∩W ) ∩X) = n(n−1(V ∩W )) = ∅ .

Using Proposition 3 (iii) and Proposition 2 (iii), we have that

X = f−1(f(X)) = f−1(A ∪B)) = f−1(A) ∪ f−1(B)

= n−1(V ) ∪ n−1(W ) = n−1(V ∪W ) ,

and from Proposition 3 (iv) it implies that

n(X) = n(n−1(V ∪W )) ⊂ V ∪W ⊂ n(X) ,

that is, V ∪W = n(X). In addition, ifA 6= ∅ andA ⊂ f(X), then n−1(V ) = f−1(A) 6= ∅
and n(n−1(V )) 6= ∅. Since n(n−1(V )) ⊂ V and n(n−1(V )) 6= ∅, then V 6= ∅. Thus,
if V,W ∈ T n(X), V ∩ W = ∅, V ∪ W = n(X), V 6= ∅ and by hypothesis n(X) is
connected, then W = ∅. Hence, f−1(B) = n−1(W ) = ∅ and since B ⊂ f(X), then
B = ∅ (otherwise, we would have to f−1(B) 6= ∅). Thus, given A,B ∈ T f(X) with
A ∩ B = ∅, A ∪ B = f(X) and A 6= ∅, it is concluded that B = ∅. Therefore, f(X) is
connected.

The conclusion of Theorem 11 does not remain valid if we replace the hypothesis
that the continuant f is n-continuous by the hypothesis of it to be widely n-continuous.
In fact, considering R equipped with the usual topology and considering as continuant
f : R − {0} → R given by f(x) = x and as continuator n : R − {0} → R given by
n(x) = |x|, it is similar to Example 8 that f ∈ Wn(X, Y ) and in addition n(R \ {0}) =

(0,∞) is connected, but f(R \ {0}) = (−∞, 0) ∪ (0,∞) is disconnected.
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7 Conclusion

It is concluded by this work that it is possible to establish a definition of generalized
continuity through generalized limits and that this definition leads to some results similar
to those resulting from usual continuity, especially results involving compactness and
connectedness.

It should be noted that generalized continuity and usual continuity are not equivalent
concepts. It can be said that generalized continuity is more flexible than usual continu-
ity, in the sense that discontinuous functions (in the usual sense) can be n-continuous,
depending on the function n considered.

Another aspect, which is no less important, is that unlike the usual continuity, the
generalized continuity presented in this article does not require topological structure in
the domains of functions, only in their codomains. Thus, it is possible to have an n-
continuous function assuming maximum value and minimum value, regardless of whether
the domain is compact or has topological structure, it is sufficient to have compactness in
the image of the function n considered.
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