
Brazilian Electronic Journal of Mathematics, v.1 - n.2, jul/dez, 2020. ISSN: 2675-1313

Optimum design of 3R robot manipulador by using
Improved Differential Evolution implemented in

parallel computation 1

Projeto ótimo de um robô manipulador 3R usando Evolução Diferencial
Melhorada implementada em computação paralela

Milena Almeida Leite Brandão2

Sezimária de Fátima Pereira Saramago3

José Laércio Doricio4

Abstract. In recent decades the great interest in Evolutionary Algorithms (EAs) has bo-
osted their development leading to a significant improvement in their efficiency and appli-
cability. Thus, EAs have been applied to solve optimization problems in different areas of
knowledge. A promising optimization method known as Differential Evolution (DE), which
belongs to the class of AEs, has attracted the attention of researchers. The DE algorithm is
simple, robust and efficient. However, by testing with classical optimization problems noti-
ced that sometimes the results obtained with DE are not as satisfactory as expected or that
in many cases the algorithm ends the search for the optimal solution prematurely. Recently,
with the advancement and greater availability of computer technology, the scientific com-
munity has been thinking about the implementation of optimization algorithms in parallel
in order to reduce the processing time. The main objective of this paper is to present an
improvement of the Differential Evolution optimization method, proposing modifications
to the basic algorithm by using shuffled complex and making it able to work with parallel
computing. The proposed methodology is applied to the optimal design of an orthogonal
3R robot manipulator that takes into account the characteristics of its workspace. For this
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purpose, a multi-objective optimization problem is formulated to obtain the optimal geo-
metric parameters for the robot. The maximum workspace volume, the maximum system
stiffness and the optimum dexterity are considered as the multi-objective functions. The
results show that the procedure represents a promising alternative for the type of problem
presented above.

Keywords. Optimization. Robotics. Differential Evolution. Parallel Computation. Impro-
ved Differential Evolution.

Resumo. Nas últimas décadas, o grande interesse em Algoritmos Evolutivos (AEs) tem im-
pulsionado o seu desenvolvimento, levando a uma melhoria significativa em sua eficiência e
aplicabilidade. Assim, os AEs tem sido aplicados para resolver problemas de otimização em
diferentes áreas do conhecimento. Um método de otimização promissor, conhecido como
Evolução Diferencial (ED), pertencente à classe dos AEs, atraiu a atenção dos pesquisado-
res. O algoritmo ED é simples, robusto e eficiente. No entanto, ao testar com problemas
clássicos de otimização, percebemos que, às vezes, os resultados obtidos com o ED não são
tão satisfatórios quanto o esperado ou que, em muitos casos, o algoritmo encerra a busca
pela solução ideal prematuramente. Recentemente, com o avanço e maior disponibilidade
da tecnologia de computadores, a comunidade científica vem pensando na implementação
de algoritmos de otimização em paralelo, a fim de reduzir o tempo de processamento. O
principal objetivo deste artigo é apresentar uma melhoria do método de otimização da Evo-
lução Diferencial, propondo modificações ao algoritmo básico usando conjuntos embara-
lhados e tornando-o capaz de trabalhar com computação paralela. A metodologia proposta
é aplicada ao projeto ótimo de um robô manipulador 3R ortogonal que leva em consideração
as características de seu espaço de trabalho. Para esse fim, é formulado um problema de oti-
mização multiobjetivo para obter os parâmetros geométricos ideais para o robô. O volume
máximo do espaço de trabalho, a rigidez máxima do sistema e a destreza ótima são conside-
rados as funções multiobjetivo. Os resultados mostram que o procedimento representa uma
alternativa promissora para o tipo de problema apresentado acima.

Palavras-chave. Otimização. Robótica. Evolução Diferencial. Computação Paralela. Evo-
lução Diferencial Melhorada.

1 Introduction

Optimization is an important tool for decision-making during the analysis and design of
physical systems. After the formulation of the model, an optimization algorithm is used
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to obtain the solution of the problem, usually with the help of computer codes. There
is no universal algorithm, but a set of methods, some of which are more suitable for
specific applications. The choice of the optimization method depends on the user and can
determine the effectiveness or failure to solve the problem.

The Evolutionary Algorithms (EAs) are general methods for stochastic search optimi-
zation which have the theory of evolution as their basis for formulation. In recent deca-
des, the great interest in these algorithms has driven their development which has led to a
significant improvement in the efficiency and applicability of EAs to solve optimization
problems in different areas of knowledge.

An algorithm belonging to the class of AEs that has emerged is the optimization
method known as Differential Evolution (DE). The DE algorithm is simple, easy, ro-
bust and efficient. But since it is a relatively new technique, emerged in the mid-90s,
many researchers have proposed modifications to the original algorithm of DE aiming to
improve its convergence. By testing with classical optimization problems, we noticed that
sometimes the results obtained with the DE are not as good as expected. Furthermore, in
many cases the algorithm terminates the search for the optimal solution prematurely.

The DE algorithm starts by creating an initial population of Np individuals, randomly
chosen, which should cover the entire search space. It is usually created by a uniform
probability distribution, when there is no knowledge about the problem.

Each individual, called vector, has n components represented by real values that are
the number of design variables. Thus, a natural population shows that the number of
individuals is generally constant for all generations.

The main idea of differential evolution is to generate new individuals, denoted vectors
modified or donors, by adding the weighted difference between two random individuals
from the population to a third individual. This operation is called mutation.

The components of the individual donor are mixed with the components of a randomly
chosen individual denoted target vector, to yield the so-called trial vector, or experimental
vector. This process is referred to as crossover. If the experimental vector result in an
objective function value is less than the target vector, then the trial vector replaces the
target vector in the next generation. This operation is called selection. The procedure is
terminated when a stopping criterion is reached.

Although several positives aspects, it has been observed that DE sometimes does not
have as good a performance as expected. The empirical analysis of DE has shown that the
algorithm may fail to proceed towards a global optimum tending to a state of stagnation,
in which individuals are very similar to each other, that is, the population is homogeneous
and the algorithm shows no improvement despite accepting new individuals in the popu-
lation. In addition, DE also suffers from the problem of premature convergence. This
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situation arises when there is a loss of population diversity. As a result, the population
converges to a point which can not be a global optimum solution. This usually occurs
when the objective function is multimodal.

As in other evolutionary algorithms, the performance of DE decreases with the in-
crease of the size of the objective function. Many other authors have suggested several
modifications in the structure of this algorithm to improve its performance.

[21] presented a new metaheuristic based on Differential Evolution for the general pro-
blem of nonlinear programming called Perfected Differential Evolution (PDA). Counting
on innovations in the use of crossover, mutation and selection operators, PDA works star-
ting from a reformulation of the original problem into of a box-constrained bi-objective
optimization problem. Additionally, PDA introduces an additional stopping criterion that
allows the detection of convergence of the population, which avoids unnecessary compu-
tational operations and, consequently, increases its efficiency.

In the article of [12], they proposed two modifications to the basic scheme of Differen-
tial Evolution: (1) the introduction of the concept of scale factor by which time-varying
vector difference will be multiplied, and (2) the variation of the scale factor in a random
mode. The goal of these modifications is to try to prevent or slow the premature con-
vergence in the early stages of the search and facilitate convergence to a global optimal
solution during later stages of the research.

According to [16], in Differential Evolution algorithm the vector mutation is generated
starting from a suboptimal vector and two other individuals in the population. The purpose
of this change is to accelerate the convergence speed of the method without the occurrence
of a premature convergence.

Other suggestions for modification of the algorithm of DE can be found in the articles:
[11], [17] and [10]. These are just some examples of the academic community’s efforts
to improve the global convergence of Differential Evolution. Many proposed changes
involve the same principle, to change some aspect of the mutation, crossover and selection
operations of DE.

Although EAs are algorithms that can solve a wide variety of optimization problems,
real problems of design optimization require much computational effort and the response
of the algorithm can take weeks or months. With the advancement and availability of
computer technology, the scientific community has considered the implementation of op-
timization algorithms in parallel in order to shorten the processing time.

In work shown by [14], they proposed a new parallelization scheme for the calcula-
tion of the value of the objective function. This scheme is based on the decomposition of
data; both the learning set and the population of the evolutionary algorithm are distributed
among processors. The processors form a pipeline using the ring topology. In a single step
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each processor computes the objective function value of a subpopulation while sending
the previous subpopulation to the subsequent processor and receives the next subpopula-
tion from the preceding processor. According to the authors, in this way it is possible to
overlap communication and computation, and the first experimental results show that, for
large datasets, the algorithm obtains very good, almost linear, speedup values.

In the paper of [23] DE is parallelized on a parallel virtual environment in order to im-
prove the speed and performance of the method. The authors report experimental results
indicating that the exchange of information between subpopulations assigned to different
processors has a significant impact on the algorithm performance.

[7] argues that the main optimization problem is the time and complexity to find the
global optimum and a way to solve this problem is the use of parallel models of the
DE algorithm. Furthermore, according [7], there are several approaches in parallelism
that can lead to a faster search for a global minimum. The parallel models most used
are the master-slave model, the island or migration model, the diffusion model and the
combination of these results in hybrid models. In his article, the migration model is
used to parallelize DE as follows: the population is divided into several sub-populations
(islands) and individuals migrate between them.

In this study, we propose a modification to the basic layout of the DE, adding to its
algorithm the concept of evolution shuffled sets, in which the central idea is to divide the
population into multiple sets or subpopulations and let each set evolve separately. This te-
chnique increases the diversity of the population helping to avoid premature convergence.
After evolving, the sets are grouped to form a new population, which is then shuffled
and divided again into subpopulations. This procedure continues until it satisfies some
stopping criterion.

Furthermore, since the algorithm showed a highly parallelizable aspect, since each set
can evolve in different processors, the modified DE algorithm is implemented in parallel
with the objective of reducing the processing time during program execution, for their
application in complex problems.

Industrial robots and computer-aided systems are the latest trend in fabrication pro-
cess automation, since the advances in the sensors field allow the development of more
sophisticated tasks. The use of robots in the industry is wide since they accomplish tasks
that are dangerous or monotonous for humans, according to [24]. This is the case of an
industrial robot used for cleaning in electrical substations, which are high voltage areas.
According to [2] and [4] in robotic manipulators, a fundamental characteristic that must
be taken into account in the dimensional design is the volume of their workspace. It is
crucial to calculate the workspace and its boundaries with perfect precision, because they
influence the dimensional design, the manipulator’s positioning in the work environment,
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and its dexterity to execute tasks.
In literature, several investigations have focused on the properties of the workspace of

open chain robotics with the purpose of emphasizing its geometric and kinematic charac-
teristics. [8] presented an algebraic formulation to determine the workspace of revolution
manipulators. [15] investigated and solved the design of manipulators in the form of an
optimization problem that takes into account the characteristics of the workspace. They
applied two different numerical techniques: the first using sequential quadratic program-
ming (SQP) and simulated annealing. [1] proposed a generic formulation to determine
voids in the workspace of serial manipulators. Other researches have focused on determi-
ning the workspace boundary and on detecting the presence of voids and singularities in
the workspace. [22] proposed a form of characterizing the workspace boundary, formu-
lating a general analytic condition to deduce the existence of cusp points in the interior
and exterior boundaries of the workspace. [9] presented a suitable formulation for the
workspace that can be used in the design of manipulators, which was formulated as a
multi-objective optimization problem using the workspace volume and robot dimensions
as objective functions. [2] and [4] studied the design of manipulators with three-revolute
joints (3R) using an optimization problem that takes into account the characteristics of the
workspace. The optimization problem is formulated considering the workspace volume
as the objective function. Constraints are added to guarantee the regularity of the envelope
and force the workspace to occupy a pre-established area.

In this paper, the developed methodology is applied to the optimal design of a 3-
revolute (3R) robot manipulator with orthogonal axes taking into account the charac-
teristics of its workspace. For this purpose, a multi-objective optimization problem is
formulated to obtaining the optimal geometric parameters for the robot. The maximum
workspace volume, the maximum system stiffness and the optimum dexterity are con-
sidered as the multi-objective functions. This work is organized as follows. A review
dedicated to the DE technique is presented in Section 2. Section 3 present a brief review
about the multi-objective problems. Section 4 present the general aspects regarding the
mathematical modeling of the manipulator. The results and discussion are presented in
Section 5. Finally, the conclusions are outlined in Section 6.

2 Improved Differential Evolution

The Shuffled Complex Evolution algorithm, SCE, ([13]) deals with the search for the
global optimum as a process of natural evolution. The Np sampling points constitute a
population which is divided into multiple sets, or subsets, such that each set has the same
number of individuals. Each of the sets is allowed to evolve independently, or exploring
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the search space in different directions. After a certain number of generations, the sets are
grouped together and mixed again, so new sets are obtained by a shuffling process.

An algorithm for the SCE optimization method could be seen in the work of [13] and
in some applications in [5].

The basic algorithm of Differential Evolution modified using the concept of evolution
with scrambled sets is called Improved Differential Evolution, or IDE. The IDE starts as
a usual DE algorithm for creating a population of individuals randomly sampled from
the feasible region using uniform probability distribution. The population is then sorted
in ascending order of values of the objective function and partitioned into multiple sets.
Each set executes the DE independently. In the evolution stage, the sets are forced to mix
and the points are reassigned to ensure the exchange of information. The process of the
proposed IDE algorithm is described in the flowchart shown in Fig. 1.

Figura 1: Flowchart of Improved Differential Evolution Method. Source: Author’s personal
file. Figure made with Power Point software.

The idea of dividing program tasks across multiple processors is old but has only re-
cently become feasible due to rapid advancement of hardware and software. Machines
have evolved greatly in speed and multiprocessor capability, and programs that utilize
these resources are showing a great increase in efficiency. Thus, the objective is to re-
duce the processing time during the execution of the improved algorithm to enable its
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application in complex problems.
In the master processor, an initial population is randomly created which is divided into

k subsets (k ∈ Z is less than or equal to the number of processors) and distributed among
a maximum of k processors. Then the DE code continues processing sequentially on each
processor until some stopping criterion is reached. Subpopulations are then grouped in
the master processor, scrambled and divided again into subpopulations. The flowchart of
the Improved Differential Evolution Optimization Method implemented in parallel can be
seen in Fig. 2.

Figura 2: Flowchart of Improved Differential Evolution Algorithm with Parallel Proces-
sing. Source: Author’s personal file. Figure made with Power Point software.

Then the IDE method implemented in parallel (IDEP) will be used to obtain the opti-
mal design of 3R orthogonal manipulators through modeling developed by [19].
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3 Multiobjective optimization

Several problems of engineering and other areas have multiple objectives to be achieved
and in these cases the mathematical models are no longer represented by a single function,
but rather by various objective functions simultaneously. These problems are known as
multi-objective optimization problems.

Intuition might lead one to believe that in order to maximize or minimize a multiob-
jective problem, it would suffice to minimize or maximize each function separately. But
the optimal solution of a function is not always the optimal point for the other functi-
ons. Therefore, the expected solution to multiobjective optimization consists of a set of
feasible solutions.

Thus, modeling in multiobjective optimization is formulated so as to find a vec-
tor of design variables, which is represented by a column vector of n variables x =

[x1x2 · · ·xn]T ∈ Rn, which satisfies both the constraints of the problem and optimizes
a vector of objective functions.

There are many methods which can be used to minimize a multiobjective function by
obtaining the Pareto optimal solution or a set of such solutions. Once you’ve found this
set the user choose the best solution based on the information we already have about the
multi-objective function and its constraints. Some of these methods are shown below.

In the methods that will be studied in this work, the set of functions is replaced by
a single scalar function that represents all the objective functions. Thus, obtaining the
optimum solution is reduced to minimize a single function. The analysis of the solution
vector is accomplished by modifying the main function according to the importance of
each goal. Therefore a set of solutions is selected according to the changes made in the
main function, and it is up to the researcher to analyze them to choose the best solution
among them.

3.1 Method of Weighting of Objectives

In this method, the multi objective optimization problems are reformulated and replaced
by a single scalar optimization problem. The main idea is to create a single primary func-
tion from the objective functions, giving them a degree of importance, that is, considering
their values according to their importance.

This manipulation of algebraic functions is given in the form:

f(x) =
n∑
i=1

wifi(x) (1)
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where wi ≥ 0 are the weights representing the relative importance of each criterion and f
and fi are functions such that f, fi : Rn → R. It must be assumed that:

n∑
i=1

wi = 1 (2)

Taking into account that the results obtained in solving a problem using the modeling
described in Eq.(1) can vary significantly with the changing values of the weightings and
that still little is known about how to choose these coefficients, it becomes necessary to
obtain different approaches varying the values of wi to solve the same problem. Once
obtained, they are compared to choose the best among them. This choice is made by
means of the user experience and knowledge of the problem.

Note that the search for the optimal point using Eq.(1) does not depend only on the
values of wi but also on the units in which the functions are expressed.

Thus, for wi to express the importance of all the objective functions, they must all be
expressed in dimensionless form. This study will use the optimal solution values of each
function f 0

i as follows:

f(x) =
n∑
i=1

wifi(x)ci (3)

ci being constant multipliers.
The method of weighting objectives is most appropriate when you want to prioritize

an objective and for this reason the result is strongly influenced by the choice of the most
important objective.

3.2 Global Criteria method

Global Criteria method uses a value established as ideal for each function as a basis of
calculation to define the degree of importance of each point x of the feasible region of
parameters. Thus, the optimal solution is a vector of decision variables which minimizes
a global criterion. This method converts the multi-objective in a single objective expressed
mathematically by the following function:

f(x) =
n∑
i=1

(
f 0
i − fi(x)

f 0
i

)s
(4)

which usually uses s = 1 or s = 2, but other values can be adopted.
It is clear that for each value of s, a solution obtained by minimizing the equation

Eq.(4) will be different. Therefore, the problem is to determine what value of s will result
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in the solution that is most suitable for the researcher. Also, we can not guarantee the
existence of satisfactory solutions because it can happen that for any value of s chosen,
the method will provide an unacceptable solution from the point of view of the user.

Equation (4) is not the only way to formulate the global multiobjective optimization
criterion function. Another possible way is through a family of metrics Lp defined as:

Lp(f) =

(
n∑
i=1

∣∣f 0
i − fi(x)

∣∣s)1/s

, 1 ≤ s ≤ ∞ (5)

If s = 1 a metric comes down to L1(f) =
∑n

i=1 |f 0
i − fi(x)|. On the other hand, if

s=infinity, we have L∞(f) = max|f 0
i − fi(x)|. The metrics used are over L1(f), L2(f)

and L3(f). Note that the minimization of L2(f) is equivalent to minimizing the Euclidean
distance between the function value and the ideal solution.

There is another technique in which instead of working with the distance in an absolute
sense, it uses the value of the relative distances. This technique is generally given by:

Lp(f) =

(
n∑
i=1

∣∣∣∣f 0
i − fi(x)

f 0
i

∣∣∣∣s
)1/s

, 1 ≤ s ≤ ∞ (6)

Because of the many formulations of global criteria, it is important that you apply
some of these to make it possible to compare the solutions and then choose the best
among them.

Global methods are indicated for cases where you want to get a compromise that seeks
to meet all objective functions.

4 Mathematical Modeling of the Robotic Manipulator

Manipulators are multifunctional machines capable of handling parts, tools and other spe-
cific devices and perform a variety of tasks. Mathematical models have been created to
describe the workspace of these robots and formulate mathematical equations to be used
in the graphical representation of this workspace. The manipulators with three rotational
joints with orthogonal axes are described in Fig. 3(a).

The study of this type of manipulator is done according to the Denavit-Hartenberg
parameters: d2, d3, d4, r2 and r3. The joint variables are 1, 2 and 3 which represent the
input angles of the actuators.

Considering the axes reference system Rj−1 and Rj shown in Fig. 3(b), the axes are
related by the transformation matrix written as:
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(a) 3R manipulator with orthogonal
axes

(b) Denavit-Hartenberg parame-
ters - reference axes

Figura 3: Representation of Denavit-Hartenberg parameters to 3R manipulator. Source: [3]
pp. 116.

T j−1j =


cj −sj 0 dj

cαjsj cαjcj −sαj −rjsαj
sαjsj sαjcj cαj rjcαj

0 0 0 1

 (7)

where cj = cos(θj), sj = sin(θj), cαj = cos(αj) e sαj = sin(αj), j = 1, · · · , n+ 1.

Thus, the end-effector of a robot with n degrees of freedom is assigned a coordinate
system T 0

n which is a homogeneous transformation matrix.

For this type of manipulator, the direct kinematic model is given by Eqs. (8), (9) and
(10):

x = [d2 + (r3sα3 − d4cα3s3) s2 + (d3 + d4c3) c2] c1 + {sα2 (r2 + r3cα3 + d4sα3s3) +

cα2 [(r3sα3 − d4cα3s3) c2 − (d3 + d4c3) s2]} s1
(8)

y = [d2 + (r3sα3 − d4cα3s3) s2 + (d3 + d4c3) c2] s1 + {sα2 (r2 + r3cα3 + d4sα3s3) +

cα2 [(r3sα3 − d4cα3s3) c2 − (d3 + d4c3) s2]} c1
(9)

z = cα2 (r2 + r3cα3 + d4sα3s3)− sα2 [(r3sα3 − d4cα3s3) c2 − (d3 + d4c3) s2] (10)

in which ci = cos θi and si = sin θi, for i = 1, 2, 3.

This research will consider 3R manipulators with orthogonal axes, in other words,
α2 = −90o and α3 = 90o. As mentioned earlier, a multi-objective optimization pro-
blem will be formulated to obtain the optimal parameters for the robot manipulator. The
mathematical formulation for calculating the workspace volume, the system stiffness and
the robot dexterity will be presented below.
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4.1 Workspace of 3R manipulators

According to [2], the workspace W is the set of all attainable points for a point P of
the end-effector when the joint variables sweep their entire definition interval. Point P
is usually chosen as the center of the end-effector, or the tip of a finger, or even the end
of the manipulator itself. The first procedure to investigate the workspace is to vary the
angles θ1, θ2 and θ3 in their interval of definition and to estimate the coordinates of point
P with respect to the manipulator base frame. The workspace of this robot is a solid of
revolution. Thus, it is natural to imagine that the workspace is the result of rotation around
the z axis of a radial plane section.

(a) Workspace volume. (b) Discretization of cross sec-
tion.

Figura 4: A scheme for evaluating the workspace volume of 3R manipulators and dis-
cretization of the cross section area by using a rectangular mesh. Source: [4] pp. 1401 and
pp.1402 respectively.

The workspace of a three-revolute open chain manipulator can be given in the form of
the radial reach r and axial reach z with respect to the base frame, according to [2]. For
this representation, r is the radial distance of a generic workspace point from the z-axis,
and z is the distance of this same point at the XY-plane (see, Fig. 4(b)). Thus, using Eqs.
(8),(9) and (10) the parametric equations (of parameters θ2 and θ3) of the geometrical
locus described by point P on a radial plane are:

r2 = x2 + y2 (11)

where x, y and z are given in Eqs. (8),(9) and (10).
The workspace volume V can be evaluated by the Pappus-Guldin Theorem, using the

following equation (see Fig. 4(a)):

V = 2rgAr (12)

where Ar is the cross section area, which is formed by the family of curves given by Eqs.
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(8),(9) and (10).
This research proposes a numerical formulation to approximate the cross section area,

through its discretization within a rectangular mesh. Initially, the extreme values of vec-
tors r and z should be obtained as:

rmin = min r, rmax = max r, zmin = min z, zmax = max z (13)

Adopting nr and nz as the number of intervals chosen for the discretization along the
r and z axis, the sizes of the elementary areas of the mesh can be calculated:

∆r = (rmax − rmin)/nr, ∆z = (zmax − zmin)/nz (14)

The nr and nz values must be adopted so that the sizes of the elementary areas (∆r

or ∆z) are at least 1% of the total distances considered in the discretization (rmax −
rmin or zmax − zmin). Every point of the family of curves form the cross section of the
workspace is calculated by Eqs. (8),(9) and (10). Using this equation, by varying the
values of θ2 and θ3 in the interval [−π, π], it is possible to obtain the family of curves of
the workspace. Given a certain point (r,z), its position inside the discretization mesh is
determined through the following index control:

i = int [(r − rmin)/∆r] + 1, j = int [(z − zmin)/∆z] + 1 (15)

where i and j are computed as integer numbers. As shown in Fig. 4(b), the point of the
mesh that belongs to the workspace is identified by Pij=1, otherwise Pij=0, which means:

Pij = 0, if Pij /∈ W (P ) or 1, if Pij ∈ W (P ) (16)

where W (P ) indicates workspace region.
In this way, the total area is obtained by the sum of every elementary area of the

mesh that is totally or partially contained in the cross section. In Eq. (16), it is observed
that only the points that belong to the workspace contribute to the calculation of the area
AT . The coordinate rg of the center of the mass is calculated considering the sum of the
center of the mass of each elementary area, divided by the total area, using the following
equation:

AT =
imax∑
i=1

jmax∑
j=1

(Pij ∆r ∆z) (17)

rg =

(
imax∑
i=1

jmax∑
j=1

(Pij ∆r ∆z) ((i− 1) ∆r + (∆r/2) + rmin)

)
/AT (18)
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Finally, after the calculation of the cross section area and the coordinate of the center
of the mass, given by Eqs. (17) and (18), the workspace volume of the manipulator can
be evaluated by using Eq. (12).

4.2 System stiffness

From the mechanical viewpoint, stiffness is the measurement of the ability of a body or
structure to resist deformation due to the action of external forces. The stiffness of a serial
mechanism at a given point of its workspace can be characterized by its stiffness matrix.
This matrix relates the forces and torques applied at the gripper link in Cartesian space to
the corresponding linear and angular Cartesian displacements.

Two main methods have been used to establish mechanism stiffness models. The first
one is called matrix structural analysis, which models structures as a combination of ele-
ments and nodes. The second method relies on the calculation of the serial mechanism’s
Jacobian matrix which is adopted in this work. Matrix J is usually termed Jacobian ma-
trix which is described in Eq. (19). By considering the case that d2=1, its determinant is
calculated by using the Eq. (20).

[J ] =

 − sin θ3 cos θ2d4 − cos θ2r2 0 − sin θ3d4
sin θ3 sin θ2d4 + sin θ2r2 d3 + cos θ3d4 0

cos θ2d3 + cos θ2 cos θ3d4 + d2 0 cos θ3d4

 (19)

det(J) = d4 (d3 + d4 cos θ3) [d2 sin θ3 + (d3 sin θ3 + (d3 sin θ3 − r2 cos θ3) cos θ2)]

(20)
The stiffness matrix of the mechanism in the Cartesian space is then given by the Eq.

(21), where Kj is the joint stiffness matrix of the mechanism, with Kj=[k1,k2,k3]. In this
case, each actuator of the mechanism is modeled as an elastic component. ki is a scalar
representing the joint stiffness of each actuator, which is modeled as a linear spring:

KC = [J ]TKj[J ] (21)

Particularly, in the case where all the actuators have the same stiffness, e.g., k = k1 =

k2 = k3, Eq. (21) will be reduced to:

KC = k[J ]T [J ] (22)

Furthermore, the diagonal elements of the stiffness matrix are used as the system
stiffness value. These elements represent the pure stiffness in each direction, and they
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reflect the rigidity of machine tools more clearly and directly. The objective function for
system stiffness optimization can be written as Eq. (23). In this case, the stiffness index
S can be maximized:

S = K11 +K22 +K33 (23)

4.3 Dexterity

The condition number of the Jacobian matrix will be used as a measure of dexterity indices
for the 3R manipulator. By using the spectral norm, these indices will be described as.

Cond(J) = |λmax(J)/λmin(J)| (24)

where λmax and λmin mean the maximum and minimum singular values of the Jacobian
matrix J , respectively. Regarding the computing time of the optimization process, this
expression is selected as the objective function for the optimization of dexterity. The
value of Cond(J), which is directly related to singular values of the Jacobian matrix, is
between 1 and positive infinity. All the singular values of the Jacobian matrix will be the
same and the manipulator is isotropic if Cond(J) is equal to 1. While Cond(J) is prone
to be positive infinity it also means that the Jacobian matrix is singular. Therefore, for the
optimization of dexterity, the condition number must be minimized.

5 Numerical simulation

The objective of the proposed manipulator design procedure is the dimensional synthesis
of the 3R orthogonal robot. In this study, the optimal design should take into account: the
workspace volume (V), the system stiffness (S) and the manipulator dexterity (Cond J).
In this way, the multi-objective optimization problem is defined as:

max f(x) = [V − Cond(J) S] (25)

subject to 0≤ xi ≤3, i = 1, · · · , 4.
In this formulation, the robot geometric parameters are adopted as the design varia-

bles, thus x = [d3d4r2r3]
T . The volume workspace is given by Eq. (12) and the system

stiffness is calculated by Eq. (23). Notice that to optimize dexterity the condition number
(Cond J), given by Eq. (24), must be minimized.

In [6], a simplified scheme for the optimal design of the robot manipulator is solved
by the Differential Evolution and Shuffled Complex Evolution optimization methods.
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In order to evaluate the performance of the DE and IDEP techniques, some important
points should be emphasized, as shown below.

According to [18], the Differential Evolution algorithm was performed applying the
computer code developed by the authors, implemented in Matlabr, using a PC Intel(R),
Core(TM)i7 920 CPU, 2.67 GHz, 3.23 GB (RAM). The parameters adopted for the DE
were: population with 15 individuals, 50 generations, ED/best/1/bin strategy, difference
factor F = 0.8 and crossover probability CR = 0.6.

The stopping criterion of the algorithm DE, adopted by [18], was the maximum num-
ber of population generations and the verification of its stagnation. According to the
author, the optimization process is stopped if no significant improvement occurs in the
value of the function after 15 successive iterations. This explains the variation in the
number of evaluations of the objective function for this technique.

The computational code of the IDEP was developed by the authors in C++ and simu-
lations were solved by using a computer Intelr CoreTM i5-430M Processor and 6 GB of
RAM. The parameters used in the IDEP were: population with 64 subjects divided into 4
processors, 50 generations, ED/best/1/bin strategy, difference factor F = 0.8 and crossover
probability CR = 0.6.

The adopted criterion to stop the IDEP was the maximum number of generations of
the population (which is 50 iterations). Thus, all cases studied were performed with 16000
evaluations of the objective function.

In the following tables the optimal values found by [18] applying Differential Evolu-
tion (DE) and the optimal values obtained using Improved Differential Evolution imple-
mented in parallel (IDEP) are summarized.

Tabela 1: Optimal values considering the Weighting Objectives Method.
Weight Algo. Volume Dexterity Stiffness [d3 d4 r2 r3 α2 α3] Time N.E.∗

Coefficient [u.v.] [u.s.]
w1 = 0.8 DE 3691.67 1.15 254.05 [3 3 3 3 3 -90 -75.43] 17.48 h 435

w2 = w3 = 0.1 IDEP 3678.19 1.18 255.30 [3 3 3 3 3 48.59 74.10] 14.15 min 16000
w2 = 0.8 DE 3608.81 1.01 249.44 [3 3 3 3 3 89.48 -90] 17.46 h 540

w1 = w3 = 0.1 IDEP 3359.80 1.04 264.51 [3 3 3 3 3 90 32.93] 14.30 min 16000
w1 = w2 = 0.1 DE 2905.83 1.17 283.51 [3 3 3 3 3 45.36 -73.29] 16.51 h 465
w3 = 0.8 IDEP 2751.82 1.39 290.69 [3 3 3 3 3 88.75 24.18] 14.36 min 16000
w1 = 0.5 DE 3609.13 1.01 249.93 [3 3 3 3 3 90 -90] 10.09 h 300

w2 = w3 = 0.25 IDEP 3646.38 1.17 265.42 [3 3 3 3 3 -11.10 -74.22] 14.38 min 16000
w2 = 0.5 DE 2846.61 1.02 214.98 [3 3 3 3 3 -81.55 -90] 7.77 h 240

w1 = w3 = 0.25 IDEP 3556.31 1.04 261.85 [3 3 3 3 3 79.83 89.10] 14.38 min 16000
w1 = w2 = 0.25 DE 3432.88 1.01 261.99 [3 3 3 3 3 68.78 90] 16.01 h 450

w3 = 0.5 IDEP 3499.26 1.14 271.17 [3 3 3 3 3 89.18 20.01] 14.13 min 16000
w1 = w2 = DE 3601.96 1.01 249.97 [3 3 3 3 3 89.55 90] 11.78 h 345
w3 = 1/3 IDEP 3617.24 1.15 267.07 [3 3 3 3 3 70.8989 -7.46] 14.01 min 16000

∗ Number of evaluations of the objective function.

It is worth noting that the optimal results present in Tab. (2) are strongly dependent
on the weighting coefficients.
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Tabela 2: Optimal values considering the Global Criterion Method.
Metric Algo. Volume Dexterity Stiffness [d3 d4 r2 r3 α2 α3] Time N.E.∗

[u.v.] [u.s.]
L1 DE 3689.50 1.20 262.60 [3 3 3 3 3 90 72.15] 29.09 h 750

IDEP 3689.50 1.19 260.91 [3 3 3 3 3 14.15 57.86] 14.01 min 16000
L2 DE 3681.31 1.21 263.l7 [3 3 3 3 3 90 69.97] 25.84 h 750

IDEP 3654.82 1.27 265.34 [3 3 3 3 3 45.67 -30.20] 14.01 min 16000
L2R DE 3436.38 1.01 262.68 [3 3 3 3 3 68.58 89.22] 14.82 h 450

IDEP 3609.40 1.00 251.60 [3 3 3 3 3 39.18 89.52] 14.08 min 16000
L3 DE 3679.75 1.15 257.88 [3 3 3 3 3 -89.26 67.62] 26.27 h 750

IDEP 3686.07 1.14 255.89 [3 3 3 3 3 73.78 -55.29] 13.97 min 16000
L3R DE 3466.22 1.04 262.92 [3 3 3 3 3 69.55 87.59] 16.54 h 495

IDEP 3266.69 1.01 259.71 [ 3 3 2.96 3 2.89 90 89.48] 14.31 min 16000
∗ Number of evaluations of the objective function.

The ideal values (optimal value for each objective function considered separately)
calculated for the workspace volume, dexterity and system stiffness are: Videal=3689.507
[u.v.], Dideal=1.0035 and Sideal=293.2703 [u.s.], respectively.

Analyzing the results shown in the tables, one can conclude that the methods are
effective to solve the problem since the results approach the ideal values.

Comparing the results obtained with DE and IDEP, it is possible to observe that are
very similar. However, for the studied problem, the IDEP method reached the optimum
faster. This analysis should be very careful, these results do not mean that this method is
always the best.

Figures 5 and 6 show the graph of the cross-sectional area of the workspace of the
robot manipulator considering the Weighting Objectives Method and the Global Criterion
Method, respectively.

(a) w1 = 0.8

w2 = 0.1

w3 = 0.1

(b) w2 = 0.8

w1 = 0.1

w3 = 0.1

(c) w3 = 0.8

w1 = 0.1

w2 = 0.1

(d) w1 = 0.5

w2 = 0.25

w3 = 0.25

(e) w2 = 0.5

w1 = 0.25

w3 = 0.25

(f) w3 = 0.5

w1 = 0.25

w2 = 0.25

(g) w1 = 1/3

w2 = 1/3

w3 = 1/3

Figura 5: Cross-sectional area of the workspace of the robot manipulator considering the
Weighting Objectives Method
Source: Author’s personal file. Figure made with Matlab software.

6 Conclusions

In this contribution, two evolutionary techniques, the Differential Evolution algorithm
and the Improved Differential Evolution algorithm (implemented in parallel) were used
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(a) Metric L1 (b) Metric L2 (c) Metric L2R (d) Metric L3 (e) Metric L3R

Figura 6: Cross-sectional area of the workspace of the robot manipulator considering the
Global Criterion Method
Source: Author’s personal file. Figure made with Matlab software.

to solve a multi-objective problem. An optimal manipulator design was presented to
illustrate the methodology studied here.

Successful numerical applications have demonstrated the efficiency of these techni-
ques. The preliminary results seem to indicate that the IDEP is faster in achieving the
optimal solution and that it’s highly parallelizable. Furthermore, the need for communi-
cation between the processors is minimum, thus ensuring a great decrease in execution
time of the program in relation to the sequential algorithm.
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